Developing and Evaluating Complex Interventions

Peter Craig

CHARM International Seminar
Oslo, 10-11 November 2015
Developing and evaluating complex interventions: new guidance

Developing and evaluating complex interventions: the new Medical Research Council guidance

Peter Craig, Paul Dieppe, Sally Macintyre, Susan Michie, Iain Nazareth, Mark Petticrew
Outline

- What is a complex intervention?
- A phased approach
 - Development, feasibility and piloting
 - Evaluating outcomes
 - Understanding processes
- Reporting and implementation
What is a complex intervention?

- Number of interacting components
- Number and difficulty of behaviours involved
- Number of groups or organisational levels targeted
- Number and variability of outcomes
- Degree of flexibility or tailoring permitted

- Good theoretical grasp of the change process
- Implementation vs. intervention failure
- Individual variation may reflect higher level processes
- A range of outcome measures
- Interventions may work better if adaptation to local context is permitted
Evaluating complex interventions

Development
- Identifying the evidence base
- Identifying or developing theory
- Modelling process and outcomes

Feasibility and piloting
- Testing procedures
- Estimating recruitment and retention
- Determining sample size

Implementation
- Dissemination
- Surveillance and monitoring
- Long term follow-up

Evaluation
- Assessing effectiveness
- Understanding change process
- Assessing cost effectiveness
Developing an intervention

- Develop interventions systematically
 - Use best available evidence, ideally from systematic review(s)
 - Develop theoretical understanding of process of change
 - Model process and outcomes

- Implementation considerations should guide all phases
 - “Would it be possible to use this?”

- An iterative not a linear process

- May be useful to follow a formal framework
An example: 6SQuID

- Breaks the development process into 6 steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Define and understand the problem and its causes</td>
</tr>
<tr>
<td>2</td>
<td>Clarify which causal factors have greatest scope for change</td>
</tr>
<tr>
<td>3</td>
<td>Identify how to bring about change: what is the change mechanism?</td>
</tr>
<tr>
<td>4</td>
<td>Identify how to deliver change mechanism</td>
</tr>
<tr>
<td>5</td>
<td>Test and refine the intervention on a small scale</td>
</tr>
<tr>
<td>6</td>
<td>Collect sufficient evidence of effectiveness to justify rigorous evaluation/implementation</td>
</tr>
</tbody>
</table>

Wight D et al. Six steps in quality intervention development (6SQuID), In press: *Journal of Epidemiology and Community Health*
Feasibility and piloting

Feasibility and piloting
- Testing procedures
- Estimating recruitment and retention
- Determining sample size

Development
- Identifying the evidence base
- Identifying or developing theory
- Modelling process and outcomes

Evaluation
- Assessing effectiveness
- Understanding change process
- Assessing cost effectiveness

Implementation
- Dissemination
- Surveillance and monitoring
- Long term follow-up
Feasibility and pilot studies

Research done before a main study to answer the question “Can this study be done?”. They are used to

- estimate important parameters that are needed to design the main study, e.g.
 - variability of the outcome measure, which may be needed to estimate sample size;
 - willingness of participants to be randomised/willingness of clinicians to recruit participants;
 - Feasibility of implementing the intervention in the study settings;
 - number of eligible patients, carers or other appropriate participants with target population;
 - follow-up rates, response rates to questionnaires, adherence/compliance rates, ICCs for cluster trials, etc.

- Test whether the procedures for the main study (recruitment, randomisation, treatment, follow-up, etc) all work together
Evaluating outcomes

Feasibility and piloting
Testing procedures
Estimating recruitment and retention
Determining sample size

Development
Identifying the evidence base
Identifying or developing theory
Modelling process and outcomes

Implementation
Dissemination
Surveillance and monitoring
Long term follow-up

Evaluation
Assessing effectiveness
Understanding change process
Assessing cost effectiveness
Assessing effectiveness

Choosing an appropriate evaluation design

- Randomised trials are often needed, but there are alternatives to the classical parallel group RCT, e.g:
 - Cluster randomisation
 - Stepped wedge designs
 - Preference (complete cohort) designs
 - Randomised consent
- With the exception of cluster RCTs these are rare, but stepped wedge designs may allow randomisation to be built into large scale implementation and deserve to be more widely used.
- What if randomisation is not possible?
Alternatives to randomised trials

• Using ‘natural’ rather than planned variation in exposure
 • How large is the change?
 • Is it abrupt or gradual?
 • How large is the population affected?
 • Does it affect the whole population or a subset?
 • How readily can individuals manipulate their own exposure?

• Size and nature of effects
 • How large are they?
 • How rapidly do they follow change in exposure?

➤ Rapid large effects are more readily detectable, but natural experiments can be used to detect more subtle effects so long as there is a suitable source of variation in exposure
Methods for natural experiment-based studies

- For large and/or rapid effects, simple approaches may be adequate

Fig 1 Suicide rates in Sri Lanka 1880-2005

- All class I pesticides banned 1995
- Parathion / methyl parathion banned 1984
- Endosulfan banned 1998
- First case of pesticide poisoning reported, 1954

Methods for natural experiment-based studies

- If the effects are smaller or more gradual, more complicated designs will usually be needed to deal with selection and other biases
 - By design
 - Multiple pre-post measures
 - Multiple exposed/unexposed groups
 - In analysis
 - Selection on ‘observables’
 - Matching
 - Multivariate adjustment
 - Propensity scores
 - Selection on ‘unobservables’
 - Difference in differences
 - Instrumental variables
 - Regression discontinuity
 - Testing
 - Mediators of change
 - Non-equivalent dependent variables
 - Sensitivity analysis
 - Combining methods and comparing results
Understanding the change process

• Why is process evaluation important?
 ➢ Failure or unanticipated outcomes are common with complex interventions
 ➢ Intervention failure or implementation failure?
 ➢ It is valuable to distinguish such outcomes, and to understand how interventions achieve their effects

• Process evaluation can
 ➢ Identify relevant features of context, and how they interact with the intervention
 ➢ Provide insights into mechanisms of impact
 ➢ Explore intervention delivery: was it delivered as intended?
Key functions of process evaluation and relations among them (blue boxes are the key components of a process evaluation).

Source: Graham F Moore et al. BMJ 2015;350:bmj.h1258
©2015 by British Medical Journal Publishing Group

MRC/CSO Social and Public Health Sciences Unit, University of Glasgow.
Implementation

Development
- Identifying the evidence base
- Identifying or developing theory
- Modelling process and outcomes

Feasibility and piloting
- Testing procedures
- Estimating recruitment and retention
- Determining sample size

Evaluation
- Assessing effectiveness
- Understanding change process
- Assessing cost effectiveness

Implementation
- Dissemination
- Surveillance and monitoring
- Long term follow-up
Reporting

- Full reporting is essential
- Important to include a detailed description of the intervention and the context
- Wide-ranging set of guidelines now available

‘Much healthcare research is wasted because its findings are unusable.’

www.equator-network.org
Influencing decision-makers

- Implementation is a behaviour change problem!
- Ask research questions that matter to patients, practitioners and policy-makers
- Involve stakeholders in planning and conducting the research
- Provide evidence in an integrated and graded way
- Identify the elements relevant to decision-making
- Make recommendations as specific as possible
- Take a multifaceted approach
- Exploit opportunities for long-term follow-up
Summary

Adequate, rigorous assessment of complex interventions requires careful development work, appropriate choice of evaluation design, incorporation of process measures, and a concern for implementation throughout the whole process.

There are alternatives to the classical RCT – but all methods have drawbacks, and the choice should be made after a careful consideration of the whole range of options.
References

• MRC guidance on Complex interventions
 http://www.bmj.com/content/337/bmj.a1655?ijkey=9c59ba1e6df770cfdd868ed58f1580ba7662318b&keytype2=tf_ipsecsha

Process evaluation
 http://www.bmj.com/content/350/bmj.h1258.full.pdf+html

Natural experiments
 www.mrc.ac.uk/naturalexperimentsguidance
 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3796763/