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Optimal Screening for Genetic Diseases 

 

 

 

Abstract 

Screening for genetic diseases is performed in many regions and/or 

ethnic groups where there is a high prevalence of possibly malign 

genes. The propagation of such genes can be considered a dynamic 

externality. Given that many of these diseases are untreatable and 

give rise to truly tragic outcomes they are a source for societal 

concern and the screening process should perhaps be regulated. The 

present paper incorporates a standard model of genetic propagation 

into an economic model of dynamic management. The paper derives 

cost benefit rules for optimal screening. The highly non-linear 

nature of genetic dynamics gives rise to perhaps surprising results 

which include discontinuous controls and threshold effects. One 

insight is that a screening program, if at all in place at all at some 

point in time, should screen all individuals.  
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1. Introduction 

Modern medicine has made great strides in curing and treating diseases caused by 

pathogens such as viruses and bacteria. This cannot be said about illnesses caused by 

our own genetic programming. This is unfortunate as many of the genetically induced 

conditions have devastating consequences for the afflicted individuals and their 

families. Diseases such as Sickle Cell Anaemia, Cystic Fibrosis and Tay Sachs are 

examples of diseases for which there is no cure and limited scope for therapy. 

Further, the economic and human costs of caring for these individuals are often 

considerable. What modern science is good at is the process of identifying the carriers 

of the gene through screening processes. Genetic tests are now commercially available 

and aggressively marketed in many parts of the world. However, this identification 

process also comes at a cost. The purpose of this paper is to establish economic 

criteria for how such screenings should be conducted. 

There is only a limited literature on the subject and it treats the subject as an 

insurance issue. Typically an individual decides on whether or not to get tested, and 

can then choose between insurance contracts contingent on the test result. The 

fundamental problem here is whether there exists an equilibrium in a market for 

insurance when information on genetic risk is endogenous, Doherty and Thistle 

(1996), Hoel et al (2006). This approach overlooks two basic features of genetic 

diseases. First, the transmission of disease inducing genes represents an externality in 

the economic sense. If parents transmit such genes, it is truly an unintended 
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consequence that is passed on to future generations, possibly through several 

generations before manifesting itself. Second, the transmission of genes from 

generation to generation is a dynamic process. These facts taken together imply that 

screening for genetic diseases is a long-term process where some degree of public 

regulatory management may be warranted. Here we incorporate these two aspects 

into a model and examine the decision on screening as a public health issue. As is 

shown below, results indicate that for serious genetic disorders, insurance 

considerations may be of secondary importance. 

Considerable effort is spent at screening for genetic diseases. In USA, almost all 

children are screened for Phenylketonuria in order that an extremely rigorous diet 

may be initiated to avoid or manage symptoms. Israel has programs that screen for 

Tay-Sachs disease as well as other genetic diseases.1 The Israeli programs have been 

very successful in the sense that the number of children born with Tay-Sachs has 

been dramatically reduced. In many cases, particular genetic diseases are more 

common in specific ethnic or social groups. Such groups are often screened separately. 

When analyzing this topic one enters an ethical minefield. If a couple plans to have 

children and they have a probability that the children will carry some terrible 

disease, the simple fact is that there are no options without pain. They can choose/be 

                                     

1 Symptoms for Phenylketonuria include severe physical and mental retardation. In almost all cases, the disease 

presents around the age of six months. Symptoms for Tay-Sachs include blindness, deafness and atrophying 

muscles. There is no cure or effective therapy. Death usually occurs before the age of five. 
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ordered not to have children. This option implies that a couple in love is barred from 

the possibility of having healthy children together.2 This is in itself a tragedy, which 

may end a loving relationship. On the other hand, if this couple has a baby, the child 

may face a very short life span traumatized by pain and retardation. Pre-natal 

testing for genetic diseases can be done with routine screening procedures such as 

amniocentesis and chorionic villus sampling. Such testing raises its own set of ethical 

issues as many parents who learn of that they are pregnant with a child with a 

serious disease will choose to have the foetus aborted. The ethics of genetic screening 

is hotly debated issue and rightly so as it deals with fundamental issues of life, death 

and health.3 This paper does not take sides in this debate, but takes the utilitarian 

view that if pre-natal genetic screening already exists and is performed on a 

substantial scale around the world, the debate can be improved if it is informed by 

the policy prescriptions of economic analysis.4  

The rest of the paper is organised as follows. Section 2 gives a short primer in the 

ecology and mathematics of genetic diseases. Section 3 presents the economic model 

                                     

2 The probability of having healthy children, given that there is a risk of genetic disease varies with the type of 

genetic disorder. For the disorders covered by the model in the present paper, the probability that a child will be 

healthy is 75%. 

3 The Israeli screening programs led to considerable debate among religious scholars, see Rosner (1998) for an 

overview of the arguments. 
4 Another source of unease with the present topic is that the question of heredity, disease, biology and screening 

has been a favourite topic for a rare bunch of unpleasant people. Some of these people have been very clever, but 

unpleasant nevertheless. The famous statistician Sir Francis Galton and Nazi ideologue Alfred Rosenberg come to 

mind.  
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and derives the results. Section 4 summarizes the results and indicates possible future 

research.  

2. Genetic Diseases and their Propagation 

In order to set the stage for the economic analysis we give an elementary description 

of the genetic mechanisms involved. A more thorough description may be found in 

any textbook on quantitative genetics such as Falconer and Mackay (1996). In the 

light of evolutionary theory, it may seem paradoxical that genetic diseases exist at 

all. Genes are supposed to be selected over thousands of generations to increase our 

ability to have healthy babies, not to give is terrible diseases. The fact that they do 

has several, often subtle, explanations. First, it should be noted that some genetic 

diseases are not hereditary. Downs syndrome is for the most part not hereditary. 

Here we focus on hereditary diseases so further discussion of non-hereditary is 

diseases is omitted. Further, we shall only discuss single gene genetic diseases. 

Diseases that depend on the expression of several genes are vastly more complicated 

and in most cases not worked out in sufficient detail to be useful for economic 

modelling. It should be noted that all diseases mentioned in this article belong to this 

type unless otherwise stated.  

Every human receives one copy of the chromosomes of each parent. These 

chromosomes are paired together in most human cells. Located on the chromosomes 

are genes whose primary purpose is to act as recipes for proteins. Many genes come in 

different varieties, termed alleles, and we may or may not receive different alleles 
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from our parents. If we receive the same allele from both parents, we are homozygote 

with respect to that gene. If we receive different alleles from our parents, we are 

heterozygote. For homozygotes, the gene will, if expressed, induce the production of a 

protein, which determines some aspect of our physiology or behaviour. For 

heterozygotes the picture is more complicated. In many cases, one of the alleles will 

completely control what protein is produced. An allele that completely controls 

expression is termed dominant. The other allele is termed recessive. Intermediate 

cases where no allele dominates completely also exist. In these cases both alleles are 

active to some degree. The different combinations are termed genotypes. There are 

two homozygote genotypes and one heterozygote genotype. 

Different protein expressions give rise to different phenotypes. Phenotypes are the 

physiological and/or behavioural manifestation caused by the proteins. If one allele is 

completely dominant, individuals may be one of two possible phenotypes. Individuals 

with two copies of the dominant allele are indistinguishable, except at the 

microbiological level, from individuals with one copy of the dominant allele and one 

copy of the recessive allele. These two genotypes constitute one phenotype.  

Individuals with only recessive genes constitute a different phenotype. If none of the 

alleles dominates completely, there will be three phenotypes, one for each genotype.   

With single gene diseases, it will be the case that individuals with one or two copies 

of the gene will become ill. If only a homozygote gives rise to the disease, the disease 

is recessive. If both homozygote and heterozygote becomes ill, the disease is 

dominant. If there is not complete dominance, the homozygote and the 
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heterozygote may exhibit different degrees of illness. Dominant and recessive diseases 

will typically be very different with respect to when a disease presents over the 

individuals lifetime. A serious dominant disease will generally appear rather late in 

life. The ecological reason for this is that a dominant disease that presents early will 

impede the individual’s reproduction. As all individuals with a disease inducing allele 

will become ill, this allele cannot hide by being paired with a non-inducing allele. 

Alleles coding for dominant diseases that presents before the individual has 

reproduced successfully will quickly be extinguished by Darwinian selection. This is 

why a disease such as Huntington’s disease will on average present when the afflicted 

is in the late fourties/early fifties.5 With recessive diseases, the picture is usually 

different. As the disease inducing allele can hide by pairing with another allele, the 

forces of selection are much weaker. Heterozygote individuals being able to reproduce 

without presenting the disease compensate for the early death of homozygote 

individuals. However, an allele which induces a disease when the individual is 

homozygote will also be selected out of the population although at a slower rate than 

dominant diseases. The persistence of alleles that recessively induce disease is usually 

explained by there being some sort of advantage to being heterozygote. Two copies of 

a disease inducing allele kills you whereas only one copy gives you an reproductive 

advantage relative to individuals with no copies of this allele. The classical example 

                                     

5 It should be noted that, although Huntington’s disease is a single gene disease, the genetics is somewhat more 

complicated than the rough description of genetic diseases given here. The disease is also dominant and does not 

fit in the model presented below. 
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of this phenomenon is the Sickle Cell gene, which induces severe symptoms when two 

copies are present, but protects from malaria even with only one copy, Kwiatkowski 

(2005). It has been suggested that Tay-Sachs gives a heterozygous advantage because 

of increased resistance to tuberculosis, Rotter and Diamond (1987). It has also been 

suggested that Tay-Sachs endows heterozygous carriers with an increased IQ which 

presumably endows the carrier with a fitness advantage, Cochran et al (2006). In 

many cases, the specific advantage to a heterozygote may be hard to identify, but 

with a line of reasoning that should be familiar to economists, biologists argue that if 

there were no advantage in being a heterozygote and only disadvantage in being 

homozygote, the disease inducing allele wouldn’t exist.  

There is much more to genetic diseases than what has been covered here. The above 

only applies to genes not located on one of the sex chromosomes. Genes located on 

sex chromosomes adds a layer of complications. Further, in addition to our own 

genes, our cells have organelles called mitochondria. These organelles, believed to 

originate with a symbiotic relationship with “bugs” early in life’s evolutionary 

history, have their own independent genome and come with their own set of genetic 

diseases.  

The variation in types of genetic diseases implies that there really is no general model 

that can be applied to all varieties. Here we focus on recessive diseases induced by a 

variant of a single gene, which still covers dozens of diseases. In addition to the 

diseases mentioned above, the genetic model in the present paper also fits Cystic 

fibrosis, Gaucher's disease, Type 1 Galactosemia, Pendred disease, 



Thalassemia, some types of Erb's muscular dystrophy and Werdnig-Hoffmann disease 

to mention a few. 

 

2.1. The Genetic Model without intervention 

We employ a standard Mendelian model of an autosomal recessive point mutation. 

There are two alleles, one mutant and one “normal”, of a gene. Denote the mutant 

allele a, and the normal allele A. There are three possible combinations of alleles; AA, 

Aa and aa. Each of these combinations represents a distinct phenotype. The 

mutation is genetically beneficial, if it is coupled with the normal gene as a 

heterozygote, but harmful if appears as a homozygote. Using standard conventions 

from quantitative genetics we assume that the natural coefficient of selection for the 

AA phenotype is s1 ∈ (0, 1), and s2  ∈ (0, 1)for the aa Phenotype. This implies that if 

each individual of the Aa phenotype has on average N offspring, phenotype AA has 

on average N(1 – s1) offspring and phenotype aa has on average N(1 – s2) offspring. 

Let q be the frequency of a in the population. From standard genetic models it 

follows that the number of aa phenotypes in the population is given by q2, the 

frequency of AA phenotypes is (1 – q)2 and the frequency of Aa phenotypes is 2q(1 – 

q). Given our assumptions it can be shown that the genetic dynamics are determined 

by:  

 
( ) ( )( )

( )
( )1 2

2 2
1 2

1 1
, 0  given

1 1
q q s q s q

q
s q s q

− − −
=

− − −
q  (1) 
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Equation (1) is derived in some detail in the Appendix. This equation has three 

steady states, q = 0, q = 1 and q = s1/(s1 + s2 ). It is easy to show that q = 0 and q 

= 1 are unstable and that q will converge to q = s1/(s1 + s2 ), denoted q , for all q(0) 

∈ (0, 1). This is illustrated by Figure 1, which shows a plot of  as a function of q.  q&

 

Figure 1, dq/dt for s1 = 0.1 and s2 = 0.25. Interior steady state value of q is 2/7. 

As it is assumed that the a allele is the potentially malign gene variety, it is assumed 

that s1 < s2.  This bounds q  between 0 and ½. One aspect suppressed in this setup is 

population dynamics. We will assume that the genetic disease does not affect the size 

of the population. This is a fairly innocuous assumption as mortality from most 
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genetic diseases is a small portion of the total mortality at any given time.  

 

The Economics of Genetic Screening 

The mathematical analysis of the present problem is somewhat involved. Therefore 

we first analyze the mathematical properties of the model and thereafter extract the 

economic implications. It is assumed that an effort E(t) is exerted in order to screen 

individuals. E(t) is to be interpreted as the fraction of the population screened at 

time t. The total number of screened individuals who are aa is then given by: 

  (2) 2F q E=

Assume further that individuals who are aa phenotypes are prevented from 

reproducing. The manner in which this is done is left unspecified, but one possibility 

that foetuses are screened and, if found to be aa, aborted. This process modifies the 

equation (1) to become: 

 
( ) ( ) ( )( )

( ) ( )
( )1 2 2

2 2
1 2 2

1 1
, 0  given

1 1
q q s q s E Es q

q q
s q s E Es q

− − − + −
=

− − − + −
 (3) 

One can easily verify that the denominator will be non-negative for all s2 ∈ [s1, 1) and 

E ∈ [0, 1]. This fact will be important later when second order conditions are 

discussed. At any time t, the fraction of the population in which the disease is 

expressed gives rise to disutility. It is assumed that this cost is given by b. This cost 
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is assumed to capture all aspects of the disease including treatment costs where 

treatments are available. Further, it is assumed that the marginal cost of screening 

effort is given by a constant K. Thus, the objective function for society is given by: 

  (4) ( )( )
( )

( )( ) ( )( 2

0 1
0

0 max rt

E t
J q b q t KE t e dt

∞
−

≤ ≤
= − −∫ )

The problem for a regulator is then to find E(t) to maximize equation (4), subject to 

the differential equation in (3). Proceeding with the Pontryagin Maximum Principle 

in the standard manner, we define the Hamiltonian: 

 ( )
( ) ( ) ( )( )

( ) ( )
1 22

2 2
1 2 2

1 1
, ,

1 1
q q s q s E Es q

H E q bq KE
s q s E Es q

− − − + −
λ = − − + λ

− − − + −
2

)q

 

The necessary conditions are:6

  (5) 
[ ]

(
0,1

argmax , ,
Y

E H Y
∈

= λ

In the event that the optimal E lies in (0, 1), E is the solution to: 

 
( ) ( )( )( )

( ) ( )( )
2

1 2
22 2

1 2 2

1 1 1 1
0

1 1

q q q s sH K
E s q s E Es q

− − − −∂ = − −λ =
∂ − − − + γ − γ

 (6) 

 

                                     

6 Here Y is used to indicate E prior to optimization. Q 
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( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( )

2 2 2
1 1 1

22 2
1 2

2 1 1 1 2 2 1 1 1 2

1 1 2
2 1

q q s q q s s q s E Es q

q s q s E Es q

Hr
q

r bq
− − − − − − − − − − + −

− − − + −

∂λ = λ −
∂

⎛ ⎞⎟⎜= λ + + λ + ⎟⎜ ⎟⎜⎝ ⎠
2

 (7) 

Optimal paths are given by solutions to (3), (5) and (7), which also satisfies the 

transversality conditions. Given the complexity of these conditions, there is no hope 

of finding a closed form solution. Further, explicit formulae for steady states, if they 

exist, will be quite cumbersome. We can however gain quite some insight by 

performing some simple algebraic manipulations. First, note that in steady state it 

must hold that  which implies that 0q =

 ( )
( )
− −=
−

1

2

1
1

s q s
E

s q
2q  (8) 

Inserting E from (7) into (8)  and then solving for λ yields: 

 
( )( )

( )( )
1

1

2 1 1
1 1

bq s q
r q r

− −
λ = −

+ − − s
 (9) 

Note that λ is negative for all q ∈(0, 1], reflecting that the marginal contribution of q 

is negative. Inserting from (8) and (9) into (3) gives the following expression: 

 

( )( )
( )( )

( )( ) ( ) ( ) ( )

3
2

0, 0 1

3 4
1 1 2 2

2 1 1
0

1 1

1 1 2 1 2 1 0

q

b q s qH K
E r q r s

K r s r K r s q b s q b s q

= λ=

− −⎛ ⎞∂ ⎟⎜ = − + =⎟⎜ ⎟⎜⎝ ⎠∂ + − −
↓

− − + + − + − − − =

 (10) 

 The left hand side of the last equation in (10) will be of some importance in the 

 
14 



sequel and we denote this expression: 

 ( ) ( )( ) ( ) ( ) ( )3
1 1 21 1 2 1 2 1q K r s r K r s q b s q b sΘ = − − + + − + − − − 4

2 q  (11) 

Note that Θ(0) < 0 and Θ(1) < 0. Θ(q) has the following properties: 

 ( ) ( )
0, 0 0, 0

0 0, 0
q q

H Hq
E E= λ= = λ=

⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜= ⇒ Θ = > ⇔ Θ >⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠∂ ∂
0q  (12) 

Roots of Θ(q) are candidates for be steady states for the solutions to problem (4). 

However, it should be noted that all roots with values of q larger than q  are 

irrelevant as it would require that a genes be introduced into the population from an 

external source.  

The general shape of Θ(q) is illustrated in Figure 2. It is straightforward to check 

that Θ(q) has either two or zero roots in [0, 1] and that one of these roots is located 

in [1/2, 1].    
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Θ(q )

-5 0 1

q

 

Figure 2, The polynomial Θ(q) 

If we focus on the shape of Θ(q) over [0, q ], there are two possibilities. Either there is 

a single root in [0, q ], or there is none. This is illustrated in Figure 3. A more formal 

phase diagram is shown below, but Figure 3 provides some good intuition for the 

qualitative nature of the solution.  
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q Θ(q)  – b High

Θ(q)  – b Low
0

Θ(q)

q Θ(q)  – b High

Θ(q)  – b Low
0

Θ(q)

 

Figure 3, Roots of Θ(q) in [0, ]. The steady state is indicated by qq ss. 

If b is “high”, then there is an unique value of q, termed qss, which is a steady state. 

If b is “low,” then there is none except possibly q . First we examine the case where b 

is high. Recall that Θ(q) is the derivative of the Hamiltonian with respect to the 

control variable, E,  given that E is chosen so that dq/dt = 0. If Θ(q) is positive for a 

given, this implies that it would pay to increase E relative to the steady state level. 

But if E increases above the steady state level, then dq/dt decreases. Conversely, if 

Θ(t) is negative, then it pays to reduce E relative to the steady state level and dq/dt 

decreases. From Figure 3 it is clear that Θ(q) is positive for q > qss, so for any value 

of q ∈ (qss , q ), q will be a decreasing function of time and converge towards qss. For 
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qss ∈ [0, qss) it will pay to decrease E as the marginal value of E is negative if E is set 

in order to keep dq/dt = 0. It follows that q will approach qss both from above and 

below and qss is therefore a stable steady state. 

This was for a high value of b. The same reasoning can be applied to low values of b. 

Here Θ(q) is negative for all q. Thus for any value of q it is optimal to decrease E 

relative to the value of E that gives dq/dt = 0, and q will converge towards q .   

In principle, it is possible to solve (12) and find qss. Unfortunately Θ(q) is a fourth 

order polynomial and any solution, if it exists, will be analytically cumbersome. 

However, it is a trivial task to find solutions with numerical methods for given values 

of the parameters. Inserting such a numerical value into (9) gives the steady state 

value of λ. One could then think that inserting the steady state value of q into (8) 

would yield the steady state value of E. This turns out not to be the case as the 

Hamiltonian is not concave with respect to E when dq/dt = 0. Calculating the second 

derivative of the Hamiltonian for interior steady states gives: 

 
( ) ( )

( )( )

242
2

22
0,0 1 1

2 1 1
0

1 1q q

q q sH
E q s= < <

⎛ ⎞ − − λ∂ ⎟⎜ = − >⎟⎜ ⎟⎟⎜∂⎝ ⎠ − −
 (13) 

This expression is positive for all negative values of λ. A value of E which solves the 

equation ∂H/∂Ε = 0 in steady state will actually minimize the Hamiltonian! The 

value of E which maximizes the Hamiltonian in steady state must therefore be found 

on the boundary of the control region [0, 1]. But if one of these values is chosen, q 

will move away from the steady state towards either q = 0 or q = 1. And it has been 
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shown above that q = qss is a steady and an attractor for all q in (0, 1). The solution 

to this conundrum is that in steady state, the optimal control function is a chattering 

control.7 By letting E fluctuate between 0 and 1, the state and co-state variable 

remain in steady state. One can show that the Hamiltonian is in fact convex with 

respect to E for all admissible values of E, q and λ. (This is shown in the appendix.)  

                                     

7 This type of control turns up from time to time when the Hamiltonian is convex in the control variable. See 

Clark (1990), page 149 for an accessible discussion.  



 

Figure 4, Phase diagram for q and λ. For all pairs of λ and q in the grey area the value of E that 

maximizes the Hamiltonian is 1. In the non-shaded area, the optimal value is 0. Note that the null-

clines for dq/dt and dq/dt in a distinct segment lies very close to the boundary between E = 0 and E 

= 1. The null-clines only intersect at the steady state point indicated by the star. The black line is the 

stable manifold with the direction of the optimal path indicated by the arrows. 

It follows that it will always be optimal to choose a value E on the boundary of the 

control region. In order to illustrate optimal paths further, a phase diagram is shown 

in Figure 4. The figure is drawn by a simple computer program, which is available 

from the author on request. The stable manifold that defines the optimal path is 

indicated by the black solid line. The direction of the optimal path is indicated by 

the arrows. The first thing to note from the figure is that everywhere along the 
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optimal path the optimal choice of E is found at the boundary of the control region. 

This is because the Hamiltonian being everywhere convex with respect to E. A 

consequence of this is that q will reach the steady state in finite time regardless of the 

starting value of q(0). Careful examination of the phase diagram also reveals that 

there is no other path that satisfies necessary conditions. Thus, under the assumption 

that an optimal path actually exists, the path shown in Figure 4 is actually the 

optimal path. 

 

Economic Implications 

Despite its complexity, the model has some very distinct implications. If there is 

screening, it should be performed universally. This is proven in Proposition 1. 

Proposition 1. 

At any given point in time, it is either optimal to screen all foetuses or no foetuses.  

Proof: 

This is a mathematically trivial consequence of the Hamiltonian being convex with 

respect to E.  

 

Although Proposition is mathematically trivial it should be noted that it follows 



directly from the fundamental dynamic properties of the propagation of genes that 

induce autosomal recessive diseases. This result can be avoided by assuming that the 

second derivative of the screening cost function is sufficiently large. However, a 

convex screening cost function is only a necessary condition for a concave 

Hamiltonian and convexity may continue to be an issue.  

 

One striking feature is that there is a lower bound on the cost of the disease where 

screening program is economically optimal. This is proven in Proposition 2. 

 

Proposition 2. 

There is a threshold value b* such that if b ≤ b*, no screening should be conducted at 

any time. b* is given by: 

 
( )( ) ( )

( )( )
1

3 4
2

1 1
*

2 1
K r s r K r s

b
s q q

− + − −
=

− −
1q  (14) 

 

Proof: 

The steady state level of qss  is determined by solutions to the equation 
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 ( ) ( )( ) ( ) ( ) ( )3
1 1 2 21 1 2 1 2 1 0ss ss ss ssq K r s r K r s q b s q b s qΘ = − − + + − + − − − =4  (15) 

This equation has at the most two roots of which a maximum of one root is located 

in [0, ½]. As q(t) ≤ q  < ½, there is at most one steady state. If b = 0, then Θ(qss) < 

0 for all qss. For b sufficiently large, there is a value qss <  which solves q (15). It 

follows that there exists a b* such that qss = q . From the convexity of the 

Hamiltonian we know that optimal E must be 0 or 1. In order for q to converge to qss 

= q , it must hold that E = 0 for all t. b* is then found by solving the equation Θ(q ) 

= 0 with respect to b. 

 

This proposition trivially makes sense. Nobody in their right mind would start a 

screening and abortion program for e.g. a disease that gives a slight increase in the 

risk of blood clots in veins. (Factor V Leiden mutation.) However, many people 

would agree that it is justified for Tay-Sachs disease, which imposes severe suffering 

on the afflicted until death occurs, usually before the age of 5.  

 

Taken together Propositions 1 and 2 have some important implications. If a 

particular genetic disease is considered severe enough to instigate a screening 

program, then the program should be universal. This may be taken to imply that if b 

> b*, a genetic screening program is a public health issue and not a private matter. 

Many of the complexities discussed in the literature on genetic screening arise from 
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the potential conflict between private health care insurers and potential patients. 

These issues become less relevant when genetic information is gathered and acted on 

in a public health care system with the cost borne by the taxpayers. Also, the 

information aspects of screening becomes a somewhat moot point all individuals are 

screened. However, if b < b* there is still scope for conflict between insurers and 

insured and the insights from the health insurance literature applies. 

 

Proposition 3. 

Assume s1 > 0. Then, for positive K it is never optimal to eradicate the disease-

inducing gene completely.  

Proof: 

From the previous discussion it is clear that qss is a an attractor for all q in (0, ), it 

follows that q(t) will be bounded away from 0. 

q

 

One way of interpreting this is result is to note that the number of ill people is equal 

to q2. As q becomes small, the number of ill goes rapidly towards zero. The number of 

ill caught for a given screening effort will therefore also decrease rapidly as q goes to 

zero. As the optimal screening effort is either E = 0 or E = 1, it makes sense that for 

sufficiently low q it makes sense to let E = 0. If q < qss it follows that q will increase.  
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An unattractive feature of the model is that the steady state is maintained through a 

chattering control. As previously pointed out, this is caused by the dynamic 

properties of the model. It is hard to imagine a screening program which switches 

between screening all foetuses and screening none at virtually every point in time. 

One of the reasons such a system seems impractical is that there are costs incurred 

when starting up and closing down a screening program. Incorporating such costs will 

generally imply that optimal screening will be a pointvise continuous function of time 

and that the frequency of the a allele will oscillate, see Wirl (1991) for an example.8

 

Summary 

Optimal pre-natal screening efforts for a certain class of genetic diseases has been 

investigated. It is found that there is a threshold cost of disease below which it is 

never optimal to screen. In this case, the frequency of the disease is determined by 

the evolutionary selection pressure on different genetic varieties. If the cost of disease 

is above this level, it is optimal to screen all foetuses until the frequency of the 

disease has reached a steady state level which is acceptable given the costs of 

screening and the cost of disease. Only pre-natal screening is examined. Alternative 

                                     

8 Obviously, if the switching costs are sufficiently high, it may be optimal to never start, or alternatively, stop a 

screening program. 
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screening strategies include genetic testing of parents and genetic counselling. An 

obvious extension of our model is to establish efficiency criteria for genetic 

counselling, possibly in conjunction with pre-natal screening. 
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Appendix.  

Deriving Equation (1).  

This equation is a standard result in quantitative genetics. The exposition follows 

Falconer and Mackey (1996). A gene is located at a locus. At any time t, if the 

fraction of genes at a particular locus that belongs to the allele a is qt and the fraction 

belonging to the allele A is 1 – qt, then the population can be divided into three 

phenotypes. The fraction of the population being aa is Qt = qt
2, the fraction being Aa 

is Ht = 2qt(1 – qt) and the fraction being AA is Pt = (1 – qt)2. Assuming that 

reproduction is sexual and well-mixed, then in the absence of any selection, the qt+1 

would be given by qt+1 = (2Qt +2 ½Ht)/(2Qt +2Ht +2Pt) = qt. This formula simply 

counts the total number of a genes and divides them by the total number of genes. If 

the aa and AA individuals are selected against, this formula must be modified. 

Assume that for every Aa for 100 offspring that reproduces, only 100×(1 – s1) of the 

AA individuals and 100×(1 – s2) of the aa achieve the same.  
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Subtracting qt on both sides yields: 

 
( )

( ) ( )( )
( )

2
12

1 2 2
1 2 1 2

1 1

1 1 1 1
t t

t t t
t

q q s q s qq s qq q q
s q s q s q s q

+

− − −−
− = − =

− − − − − −
2

2 2
 (A.2) 

This is a discrete time version of the differential equation for q presented in Equation 

1. 

Convexity of the Hamiltonian with respect to E.  

 

The second derivative of the Hamiltonian with respect to E may be written: 
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1 1

q q q s sH
E s q s E Es q

− − − − − λ∂ =
∂ − − − + −

 (A.3) 

λ is negative for all t. This follows directly from the fact that λ is the marginal 

contribution of q to the objective function at time t. Therefore the numerator is 

positive. The denominator is the denominator from equation (3) raised to the power 

of 3. As this expression is positive for all admissible q and E, it follows that the 

Hamiltonian is convex with respect to E over [0, 1] and strictly convex over (0, 1).  
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