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Abstract 
This paper investigates the set of equilibria in models of social interaction and Quantal 

Response Equilibrium (QRE). First, we discuss how models of social interaction can be 

viewed as a special case of QRE. Subsequently, we establish criteria that characterize the set 

of equilibria in models of social interaction and QRE. Finally, we establish conditions for 

convergence of sequential stochastic game models to QRE when players learn about the 

aggregate behavior of the players.  
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1. Introduction 

In standard textbook applications of game theory, players are assumed to behave perfectly 

rational and being able to account for other players’ uncertain actions in a consistent (optimal) 

way when computing and maximizing (expected) payoffs. McKelvey and Palfrey (1995, 

1998) extended the notion of Nash equilibrium in game theory to a corresponding stochastic 

theory denoted Quantal Response Equilibrium (QRE). Thus, in the QRE model, perfectly 

rational expectations equilibrium embodied in mixed strategy Nash equilibrium is replaced by 

an imperfect, or noisy, rational expectations equilibrium meaning that the players are assumed 

to maximize expected utility plus noise (Goeree et al. 2005, 2016). The QRE comprises a 

limiting case where the QRE coincides with a subset of Nash equilibria (Nash, 1950). Related 

approaches are discussed by Anderson et al. (2002) and Chen et al. (1997). Haile et al. (2008) 

have discussed the empirical content of QRE and Melo et al. (2019) have discussed testing of 

QRE models.  

It is known that QRE models may have a single or several equilibria. Specifically, 

McKelvey and Palfrey (1995) proved that an equilibrium exists in QRE models. The purpose 

of this paper is to establish conditions for the existence of single and multiple equilibria in 

symmetric logit QRE models. We start by discussing logit choice models with social 

interaction which in some cases can be viewed as special cases of QRE models. In models 

with social interaction the preferences of an individual depend on the aggregate behavior of 

others. Choice models with social interaction allow the researcher to address how individual 

characteristics and aspects of social behavior interact, consistent with typical views in social 

science (Coleman, 1988, 1990). Models with social interactions have been applied to a wide 

variety of problems within social science, see for example Brock and Durlauf (2001), Kirman 

and Zimmermann (2001), and Kline and Tamer (2020). In the binary logit model with social 

interaction equilibrium conditions have been discussed by Becker (1974, 1991) and Brock and 

Durlauf (2001).  

In this paper we show how the technique used to establish conditions for equilibrium 

in binary logit model with social interaction can be extended to the multinomial case. 

Subsequently, we extend our results to the case of symmetric QRE models. Thereafter, we 

consider the case with a population of pairs of players playing repeated games where the 

players ex ante are ignorant about the behavior of other players but are updated about the 

aggregate behavior of the players at each stage. In this case we establish conditions for the 

convergence to QRE.  
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 The paper is organized as follows. In section 2 we present a general framework for the 

QRE model. Section 3 discusses a typical multinomial logit model of social interactions. In 

section 4 we analyze symmetric QRE models. Section 5 discusses the case of repeated games 

in a stationary environment.  

 

2. Multinomial logit quantal response games 

Consider a setting with two players, player a and player b. To player a there are m alternatives 

available and n alternatives are available to player b. Given that player b chooses alternative k 

then if player a chooses alternative j then player a receives payoff .a

jkv  Similarly, the payoff to 

player b is 
b

kjv  if player b  chooses alternative k given that player a chooses alternative j. The 

payoff matrices { , }a b

jk kjv v  are assumed to be common knowledge. Let, the probability that 

player s shall choose alternative j equals ( ),sP j  s = a, b. The respective expected payoffs to 

player a and b when choosing alternatives j and k are therefore given by  

  
1

( )
n a b

jrr
v P r

=    and    
1

( )
m b a

krr
v P r

=   

The players are assumed to make choices which maximize a

jU  and ,b

kU  respectively, given by 

  
1

( )
na a b a

j jr jr
U v P r 

=
= +     and     

1
( )

mb b a b

k kr kr
U v P r 

=
= +   

where a

j  and b

k  are random variables for all j and k.  

   

 Assumption 1 

 The random error terms { , )a b

j k   are mutually independent and independent of 

{ ( ), ( )}a bP j P k  with 

( ) exp( exp( / ))a a

jP x x  = − −   and  ( ) exp( exp( / ))b b

kP x x  = − −  

for real x, where 0a

j   and 0b

k   are constants. 

 

 Assumption 1 means that the distributions of { , )a b

j k   do not depend on the payoff 

matrix and that the behavior of the players satisfy probabilistic rationality (Luce, 1959).  

Define ( (1), (2),...),a a aP P P=
1

( ) ( )
na b a a b

j jrr
V P v P r

=
=    and  

1
( ) ( ).

mb a b b a

k krr
V P v P r

=
=   

It follows from Assumption 1 that   

(2.1)                ( )
1

exp( ( ))
( ) max

exp( ( ))

a b

ja a a

j s m a bs m
rr

V P
P j P U U

V P

=

= = =


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and 

(2.2)            ( )
1

exp( ( ))
( ) max

exp( ( ))

b a
b b b k

k s n a as
rr

V P
P k P U U

V P
=

= = =


  

(McFadden, 1973). Under Assumption 1 the model given in (2.1) and (2.2) becomes the 

Quantal Response Equilibrium model (QRE). When m n= , 
a b  = =   and 

a b

jk jk jk kjv v v v= = =  the model reduces to a symmetric QRE with ( ) ( ) ( )a bP j P j P j= =  where 

(2.3)  

1

exp( ( ))
( )

exp( ( ))

j

m

rr

V P
P j

V P
=

=


 

and 

  
1

( ) ( ).
m

k krr
V P v P r

=
=   

We call this model the symmetric QRE model. 

  

 Proposition 1 

 The equilibrium choice probabilities given in (2.1) and (2.2) satisfy the following 

inequalities: 

 
exp(min ) exp(max )

( )
exp(min ) exp(max ) exp(max ) exp(min )

a a a a

s js s jsa

a a a a a a a a

s js s rs s js s rs

r j r j

v v
P j

v v v v

 

   
 

 
+ + 

  

and  

 
exp(min ) exp(max )

( ) .
exp(min ) exp(max ) exp(max ) exp(min )

b b b b
bs sk s sk

b b b b b b b b

s sk s sr s sk s sr

r k r k

v v
P k

v v v v

 

   
 

 
+ + 

  

 

 The proof of Proposition 1 is given in the appendix. 

 The stochastic formulation of game theory enables researchers to formulate and 

estimate models in cases where the payoffs are unobservable utilities that may depend on 

several observable attributes, pecuniary as well as non-pecuniary ones. For example, in the 

symmetric case ( )jk kjv v=  where the normalized payoffs are given by ,jk jkv Z =

( (1), (2),...),jk jk jkZ Z Z=  is a vector of observable attributes and   is an unknown parameter 

vector to be estimated, the QRE model implies that 

       
( )

log ( )( )
( )

jk mk

k

P j
P k Z Z

P m


 
= − 

 
   
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We note that when the dimension of   is less than or equal to 1m−  then   is identified 

provided  the matrix { }jra  has rank 1,m−  where 

        ( )( ( ) ( )).jr jk mk

k

a P k Z r Z r= −   

 

3. Social interaction as a special case of QRE  

Some authors, such as Becker (1974, 1991), Becker and Murphy (2000), Brock and Durlauf 

(2001, 2002), Kirman and Zimmermann (2001), Manski (2000) and Shelling (1971), have 

discussed different settings with social interaction in economics. We shall now see how 

choice behavior when the preferences are influenced by the aggregate behavior of others, can 

be formulated as a QRE model.  

Let iS  be the set of individuals in the peer group of agent I, and im  the number of 

individuals in iS .  Let 1kj =  if alternative j is the most preferred alternative of individual k in 

the population and equal to zero otherwise. The individuals in iS  are perceived as being well 

informed by agent i and their judgments are trusted by the agent. The aggregate behavior of 

individuals in iS  is known to her or him. The utility of agent i of alternative j is assumed to 

have the following structure:  

(3.1)  0.5 / 0.5 (1 ) /

i i

ij j kj i kj i ij

k S k S

U m m     
 

= + − − +    

where j  is a deterministic term that is known to the agent and   is a non-negative 

parameter. Thus, 0.5j +  is the utility of alternative j of agent i if alternative j is the most 

preferred alternative of agent k and equal to 0.5j −  if alternative j is not the most preferred 

alternative of agent k. The variable kj  is uncertain to agent i. The variable ij  is a stochastic 

error term. The error terms { }ij  may fluctuate from one moment to the next due to the 

inability of the agent to assess the precise value (to him) of the alternatives. Since all the 

terms { }k  cannot be identified there is no loss of generality by letting 0.m =  Let : s

ij kjP E =  

for 
ik S ,  where sE  denotes the subjective expectation operator. That is, ( )iP j  is the 

perceived subjective probability that agent k in the agent’s peer group shall choose alternative 

j.  Using (3.1) it follows that the subjective expected utility of agent i is equal to  

(3.2)  ( ) .s
ij j i ijE U P j  = + +  
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Let s

j ij kjP EP EE = =  for 
ik S  where E is the objective (population) expectation operator. We 

can rewrite (3.2) as 

(3.3)  ( ) ( ( ) ( )) ( )s
ij j i ij j ijE U P j P j P j P j      = + + − + = + +  

where ( ( ) ( )) .ij i ijP j P j  = − +  If , 1,2,..., ,ij j m =  are assumed independent and distributed 

according to Assumption 1 with 1, =  it follows that  

 

Figure 1. Equilibria in the binary choice model

 

(3.4)               

1

exp( ( ))
( )

exp( ( ))

j

m

rr

P j
P j

P r

 

 
=

+
=

+
   

We note that the structure of the formula in (3.4) is a special case of the framework 

considered above with .jk j jkv  = +   

In the binary case the model in (3.4), with the normalization 2 0, =  reduces to  

(3.5)           
2

1
1

exp( (1)) 1
(1) .

1 exp( 2 (1))exp( ( ))

j

rr

P
P

PP r

 

  
=

+
= =

+ − −+
  

Becker (1991) has discussed the model in (3.5). It may be instructive to repeat part of his 

discussion here. To this end suppose that 1  is a function of a variable such as for example 

the price difference between the two alternatives. In this case it follows that the “inverse 

aggregate demand” equals 

  

0 0.5 1 

 

 
 

A B C 
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(3.6)              1

(1)
log 2 (1)

1 (1)

P
P

P
  

 
= + − 

− 
  

which implies that  

(3.7)  1 1
2 .

(1) (1 (1)) (1)P P P





= −

 −
  

Since (1 (1)) (1) 1/ 4P P−   it follows from (3.7) that the function (3.6) has the shape as given 

in Figure 1 provided 2.   Thus, we realized that if 1 1 1

L H     and 2   three equilibria 

exists. However, only the equilibria A and C are stable whereas B is unstable.  

In the general case with m alternatives Brock and Durlauf (2002) have proved that 

when j  is independent of j for all j then the model in (3.4) has multiple equilibria when 

.m   The next result extends the result of Brock and Durlauf (2002) to the case with general 

{ }.j  Before stating the result we need the following notation. Let 

(3.8)         ( )( ) 0.5 ( 4) log 0.5 1 0.5 ( 4)f x x x x x x= − − − + −   

for 4.x   It follows readily from (3.8) that ( )f x  is strictly increasing for x > 4. Since 

(4) 0f =  it follows that ( ) 0f x   when 4.x    

 

 Theorem 1 

 Let P  be any stable equilibrium vector of choice probabilities satisfying (3.4) and let 

(1) (2).P P = +  

(i)    If 2   

or  

        2   and 1 2(2 ) | |f    −    

for every enumeration of the alternatives then the equilibrium vector P is unique. 

(ii)   If 2   and 
1 2(2 ) | |f    −   

there exist two other equilibria of which one is stable and the other one is unstable. 

 

 The proof of Theorem 1 is given in the appendix. Evidently, the enumeration of the 

alternatives is irrelevant for the result of the theorem. Thus, if ( ) ( )P r P s = +  where r s  

then the result in Theorem 1 holds with the obvious modification the indexation of the alfas. 

The next result follows from Theorem 1 and Proposition 1. 
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Corollary 1 

            If    

,

(exp( ) exp( ))
2

exp( ) exp( ) exp( ) exp( )

r s

r s k

k r s

  

   


+


+ + − 
 

 for all feasible combinations of r and s there is only one equilibrium of the choice 

probabilities. 

 

4. Equilibria in the symmetric QRE model 

For simplicity we start by considering the symmetric binary case with two alternatives 

available to both players. In this case the QRE model be written as 

(4.1)     11 12

2
11 22 12 12 221 21

exp( (1) (2)) 1
(1) .

1 exp( ( 2 ) (1) ))exp( (1) (2))r rr

v P v P
P

v v v P v vv P v P
=

+
= =

+ − + − − ++
   

Since the model given in (4.1) has the same mathematical structure as the model in (3.4) the 

next result follows. 

 

 Theorem 2 

          Assume a symmetric game with m =2. 

(i)      If either 
11 12 22( 2 ) 4,v v v− +    

or   

         11 12 22( 2 ) 4v v v− +   and 11 12 22 11 22( 2 ) 0.5 | |f v v v v v− +  −   

then there exists a unique equilibrium. 

(ii)    If 11 12 22( 2 ) 4v v v− +   and 11 12 22 11 22( 2 ) 0.5 | |f v v v v v− +  −    

 there exist 3 equilibria of which two are stable and one is unstable. 

 

The proof of Theorem 2 is given in the appendix. McKelvey and Palfrey (1995) have 

proved that there exists at least one equilibrium in the general QRE model, that the center of 

the simplex is an equilibrium when λ → 0, and that “for almost all games there is a unique 

selection when λ → ∞ (McKelvey and Palfrey, 1995 p. 12.).  

Next, we shall apply a variant of the approach used to prove Theorem 2 to obtain 

similar results for the multinomial case. In this case the equation system that defines 

equilibrium is given by 
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(4.2)        

1

exp( ( ))
( ) ,

exp( ( ))

j

m

rr

V P
P j

V P
=

=


     ( ) ( )j jkV P v P k=  

for j = 1, 2, …, m. Let P  be any given equilibrium vector (which exists).  

 

 Theorem 3 

 Assume that the payoff matrix { }jkv  is symmetric. Let P  be any equilibrium vector of 

choice probabilities and let (1) (2)P P = +  and (1) / .q P =   

(i)   If either 11 12 22( 2 ) 4,v v v − +   

or 

       11 12 22( 2 ) 4v v v − +   and 11 22 12 11 22 1 23
(( 2 ) ) | 0.5( ) ( ) ( ) |

m

r rr
f v v v v v v v P r 

=
+ −  − + −    

for every enumeration of the alternatives, then the equilibrium vector P is unique.  

(ii)   If 11 12 22( 2 ) 4v v v − +   and  11 22 12 11 22 1 23
(( 2 ) ) | 0.5( ) ( ) ( ) |

m

r rr
f v v v v v v v P r 

=
+ −  − + −   

there exist two other equilibria for q (for given P ) of which one is stable and the other one is 

unstable. 

 

The results obtained in Theorem 3 provide necessary and sufficient conditions for 

unique- or multiple equilibria in the symmetric QRE model. As noted above, the enumeration 

of the alternatives is irrelevant for the result of the theorem. If m = 3 for example, there are 3 

possible enumerations of the alternatives, so that either (1) (2)P P = +  or (1) (3).P P = +   

 

5. Equilibrium choice probabilities obtained by repeated stationary games 

The QRE model is implicitly based on the assumption that the players are somehow able to 

calculate the equilibrium choice probabilities. However, no theory is offered on how the 

players actually are able to find the equilibrium probabilities. In this section we consider the 

case of repeated games in a stationary environment. By stationary environment it is 

understood that the payoff matrices of the players remain unchanged over the repetitions. We 

show below that if players play repeated games in a stationary environment then, under 

specific conditions, the corresponding iterative process will converge to equilibrium.  

Consider a large population of observationally identical players. Each player makes 

his choice based upon the maximization of a linear combination of expected utility and a 

stochastic error term, given the population choices of other players. A priori, the players are 

assumed ignorant about the equilibrium choice probabilities. The players play repeated games 
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in several stages in a stationary environment. In the first stage the players select an arbitrary 

vector of choice probabilities which is used to calculate the systematic term of the respective 

expected utility or payoff. In stage two the game is played where the observed relative 

frequencies in the population obtained from the first stage (which are assumed to be common 

knowledge) are used to get an updated estimate of the expected payoffs. Provided the 

population is large, the observed fractions of choices will be close to the corresponding 

theoretical choice probabilities (stage dependent), since relative frequencies are consistent 

estimators of the choice probabilities. In stage three, the game is played again based on the 

updated expected payoffs, and so on, until convergence is achieved. To state the next result 

we need some additional notation.  

 Define 

 
exp( ( ))

( )
exp( ( ))

a b

ja b

j a b

r

r m

V P
F P

V P


=


   and   
exp( ( ))

( )
exp( ( ))

b a
b a k

k b a

r

r n

V P
F P

V P


=


 

where ,tP  t = a, b, are the vectors of choice probabilities. Let  

       { : ( ) (0,1), ,a P P j j m =  
1

( ) 1},
m

r
P r

=
=  { : ( ) (0,1), ,b P P j j n =  

1
( ) 1},

n

r
P r

=
=    

1 2( ) ( ( ), ( ),...),a b a b a bF P F P F P=  and let ( )b aF P  be define similarly. 

 

 Theorem 4  

 Assume that the expected payoff matrix satisfies the following inequalities 

    max (max ( ) min ( ))
1

a a a a

j k jk mk k jk mk

n
v v v v

n
− − − 

−
     

and    

    max (max ( ) min ( )) .
1

b b b b

k j kj nj j kj nj

m
v v v v

m
− − − 

−
  

Then the mapping ( , ) ( ( ), ( ))a b a b b aP P F P F P→  is a contraction and therefore has a unique fixed 

point on ( , ).a b    

 

The proof of Theorem 4 is given in the appendix. Theorem 4 states that under the 

specific condition on the payoff matrix there exists a unique equilibrium value of the 

respective systematic terms of the expected utilities.  

 The next Corollary follows readily. 
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 Corollary 2 

 Assume that n = m, .a b

jk kj jk kjv v v v= = =  Then the mapping ( )a bP P P F P= = →  is a 

contraction and therefore the QRE exists and is unique provided 

   max (max min ) .
1

j k jk k jk

m
v v

m
− 

−
  

 

6. Conclusions 

In this paper we have developed conditions for determining the number of stable equilibria in 

QRE models. Specifically, we have demonstrated how the idea used to analyze the set of 

equilibria in the binary model of social interaction can be extended to the multinomial case 

and more generally, to symmetric QRE models. Under stronger conditions we have shown 

that repeated games (not necessarily symmetric) in a stationary environment where the 

players do not know the expected payoffs will converge to QRE.  
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Appendix 

Proof of Proposition 1: 

Evidently it must be true that min ( ) max .a b

s js j s jsv V P v   Remember that the function 

  
exp( )

exp( )

j

kk

y

y
  

is increasing in jy  and decreasing in ky  for .k j  In equilibrium one must therefore have that 

 
exp( ( )) exp(max )

( ) .
exp( ( )) exp(max ) exp(min )

a

a b a a

j s jsa

a b a a a a

r s js s rs

r jr X

V P v
P j

V P v v



 


= 
+ 

 

Similarly, we have that  

 
exp( ( )) exp(min )

( ) .
exp( ( )) exp(min ) exp(max )

a

a b a a

j s jsa

a b a a a a

r s js s rs

r jr X

V P v
P j

V P v v



 


= 
+ 

 

The corresponding inequalities for ( )bP k  are proved in a similar way. 

              Q.E.D. 

Proof of Theorem 2: 

Let 11 22 122 ,D v v v= + −   

      ( ) log ( 0.5),
1

x
g x D x

x

 
 − − 

− 
 for (0,1),x  

and let 1x  and 2x  be the roots of ( )g x determined by 

     
1

( ) 0
(1 )

j

j j

g x D
x x

 = − =
−

,  

which are given by 

    
1

4
0.5 0.5 1x

D
= − −     and    

2

4
0.5 0.5 1 .x

D
= + −  

Note first that (4.1) is equivalent to  

(A.1)  11 22( (1)) 0.5( ).g P v v= −   
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We have that ( ) 0g x   if 4D  because (1 ) 4x x−   for all (0,1).x  Thus, in this case only a 

single equilibrium can occur. If 4D   and 
1 1( ) ( )g P g x  then also only one equilibrium can 

occur. Since 
1 11 22( ) ( ) / 2g P v v= −  the latter inequality is equivalent to 

11 22 1( ) / 2 ( ).v v g x−   

Similarly, if 4D   and 
11 22 1 2( ) / 2 ( ) ( )v v g P g x− =   only one equilibrium can occur. If, 

however, 4D   and 2 11 22 1( ) ( ) / 2 ( ),g x v v g x −   we realize that 3 equilibria may occur, and it 

is easy to show that one of them is unstable. Note that 

 2

1 1 4 /
( ) log 0.5 1 4 /

1 1 4 /

D
g x D D

D

 + −
= − −  − − 

  

 ( )log 0.5 1 0.5 1 4 / 0.5 1 4 /D D D D D= − + − − −   

 ( )log 0.5 1 0.5 ( 4) 0.5 ( 4) ( ).D D D D D f = − + − − − = −   

Similarly, it follows that 
1( ) ( ).g x f D=  Hence, the inequality 

11 22 10.5( ) ( )v v g x−   is equivalent 

to 
11 220.5( ) ( )v v f D−   and the inequality 

11 22 20.5( ) ( )v v g x−   is equivalent to 

11 220.5( ) ( ).v v f D−  −  Thus, the two inequalities can be expressed as 
11 220.5 | | ( ),v v f D−   

which proves (i). The proof of (ii) is similar. 

                                    Q.E.D.  

Proof of Theorem 3:   

Let 11 22 122D v v v= + −  (as above) and 

                    ( ) log ( 0.5),
1

x
x D x

x
 

 
 − − 

− 
  

for (0,1).x  (Note that when 1 =  then ( ) ( ).)x g x =  Moreover 

         
1

( ) .
(1 )

x D
x x

   −
−

 

Let 
1z  and 

2z  be the roots of ( ),x   that is, 
1 2( ) ( ) 0.z z  = =  These roots are given by 

(A.2)                1

4
0.5 0.5 1z

D
= − − ,    2

4
0.5 0.5 1 .z

D
= + −  

By using the results of Theorem 2 as a starting point it is easy to see how it can be extended to 

the general multinomial case. Note that whereas   is given, (1) /q P =  is so far not 

determined. The relation that determines q, and is equivalent to (4.2), is   

(A.3)         11 22 1 23
( ) 0.5( ) ( ) ( ).

m

r rr
q v v v v P r 

=
= − + −   

 Similarly to the proof of Theorem 2 it follows, with f given in (3.8), that 

 
2( ) ( )z f D = −  and 

1( ) ( ).z f D =   
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By using (A.2) and (A.3) we therefore get the next result which is analogous to the result of 

Theorem 1. 

                 Q. E. D. 

 

Proof of Theorem 1: 

As in Theorem 2, define (1) (2),P P = +  (1) / ,q P =  and  

( ) log 2 ( 0.5),
1

x
x x

x
 

 
= − − 

− 
 

1

2
0.5 0.5 1y


= − −     and    2

2
0.5 0.5 1y


= + − . 

It follows from (3.4) that the equilibrium probabilities must satisfy 

 1 2( ) .q  = −   

The rest of the proof is similar to the proof of Theorem 3. 

              Q.E.D. 

 

Proof of Theorem 4: 

Let ,a a a a a

jk jk mk jn mnu v v v v= − − +  ,b b b b b

kj kj km nj nmu v v v v= − − + and let the vectors 1mx R −

+  and 1ny R −

+ have 

components defined by  

           
1

1
,

n a b

j js ss
x u P

−

=
=    

1

1

m b a

k ks ss
y u P

−

=
=   

and define 

        
1

1

exp
( ) ,

1 exp

pb

p n

ss

y
F y

y
−

=

=
+

  
1

1

exp
( )

1 exp

qa

q m

ss

x
F x

x
−

=

=
+

 , 

                
1

1
( ) ( )

na a b

j js ss
G y u F y

−

=
=   and   

1

1
( ) ( ).

mb b a

k ks ss
G x u F x

−

=
=  

Let x  and x be two different vectors in 1mR −

+
 and define the norm of x by || || max | | .k kx x=  

Then by the mean value theorem we have that 

(A.3)            
( )

| ( ) ( ) | | ( ) |
b

b b k
k k s s

s m s

G x
G x G x x x

x






− = −


   

           
( ) ( )

| || | max | | | |
b b

k k
s s s s

s m
s m s ms s

G x G x
x x x x

x x

 


 

 
 −  −

 
    

for some suitable vector x in .mR+
 From (A.3) we conclude that 

(A.5)            
( )

|| ( ) ( ) || || || max max | |.
m

b
b b k

k n z R
s m s

G z
G x G x x x

x 



−  −


   
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From the definitions above it follows that  

(A.6)          (1 )
a

a as
s s

s

F
F F

x


= −


  and   ,

a
a as

s r

r

F
F F

x


= −


  

for .r s  Hence, it follows that 

(A.7)         (1 ) .
b

b a a a b ak
ks s s s kr r

r ss

G
u F F F u F

x 


= − −


   

Let min .b

k j kjd u=  Evidently, we have that 0b

kr ku d−   and 1a

rr
F   implying that 

(A.8)         0 ( ) (1 )max( ).a b a a a b

s kr k r r r sr k
r s

r s

F u d F F F u d




 −  − −   

Consequently, (A.7) and (A.8) yield 

(A.9)       | | | | | ( ( ) |
b

a b a a b a b a bk
s ks r s kr s ks k r kr kr r

s

G
F u F F u F u d F u d

x


= − = − − −


    

max( (1 )( ), ( )) (1 )(max ).a a a a b a a b

s s sk k r s kr k s s r kr kr s
F F u d F F u d F F u d


 − − −  − −   

It is easily verified that  

(A.10)  
1

(1 ) 1a a

s s

s

F F
m

−  −   

Thus, (A.5), (A.9) and (A.10) imply that  

(A.11)            
( ) 1

max max | | max (max ) 1 .
m

b
bk

k k r kr k
z R

s m s

G z
u d

x m


  
 − − 

  
   

Therefore, we obtain from (A.5) and (A.11) that 

(A.12)              
1

|| ( ) ( ) || || || max (max ) 1 .b b b

k r kr kG x G x x x u d
m

 
−  − − − 

 
  

Similarly, with min a

r k rkf u=  it follows that  

(A.13)              
1

|| ( ) ( ) || || || max (max ) 1 .a a a

r k rk rG y G y y y u f
n

 
−  − − − 

 
 

Let  

             
1 1

max max (max ) 1 ,max (max ) 1 .a a

k r rk k r k rk rc u d u f
m n

    
= − − − −    

    
  

From (A.12) and (A.13) it follows that  

(A.14)  || ( ) ( ) || || ||b bG x G x c x x−  −  

and 

(A.15)  || ( ) ( ) || || || .a aG y G y c y y−  −   
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Thus, (A.14) and (A.15) imply that if 1c  then the mapping ( ( ), ( ))a bG y G x  is a contraction 

mapping on 2.m nR + −

+
 From the contraction mapping theorem (Rudin, 1976) it follows that a 

unique fixed point of ( ( ), ( ))a bG x G y  exists.   

           Q.E.D. 

 

Proof of Corollary 1: 

It follows from (3.4) that 

          

,

exp( ) exp( )
: .

exp( ) exp( ) exp( ) exp( )

r s
rs rs

r s k

k r s

 
 

   


+
 =

+ + − 
  

From Theorem 1(i) we obtain that if 2rs    for all r and s then only one equilibrium 

exists.  

                      Q.E.D. 
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