
 

Health Economics Research Network at the University of Oslo 
ISSN 1501-9071 (print version.), ISSN 1890-1735 (online), ISBN 978-82-7756-275-9 

 

 

 
Equilibria in Logit 
Models of Social 
Interaction and 
Quantal Response 
Equilibrium 
 
John K. Dagsvik 
Research Department,  
Statistics Norway 
Department of Health Management 
and Health Economics,  
University of Oslo 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIVERSITY  
OF OSLO 
HEALTH ECONOMICS 
RESEARCH NETWORK 
Working paper 2023:1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 
 

 
24 February 2023                 
 
 

  
 

Equilibria in Logit Models of Social Interaction and Quantal 
Response Equilibrium 

 
by 
 

John K. Dagsvik 

Research Department, Statistics Norway, and 
Department of Health Management and Health Economics,  

University of Oslo, Norway 
 
 
 

 
Abstract 
The Quantal Response Equilibrium (QRE) extends the notion of Nash equilibrium in game 
theory to a corresponding stochastic equilibrium model. In QRE models, perfectly rational 
expectations equilibrium embodied in mixed strategy Nash equilibrium is replaced by an 
imperfect, or noisy, rational expectations equilibrium. An important subclass of QRE is the 
logit models of social interaction. It is known that at least one equilibrium exists in QRE 
models, but it is not known if, and when, there exist several equilibria. In this paper we 
discuss cases when unique- or several equilibria exist in two-persons multinomial logit QRE 
models. Second, we consider the equilibria in multinomial models with social interaction. 
Third, we discuss corresponding dynamic games and stability. Finally, we consider several 
examples. 
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1. Introduction 
Models with social interaction represent attempts to take into account that behavior of an 

individual in some contexts depends on the behavior of others. Thus, this type of models 

allows the researcher to address how individual and aspects of social behavior interact, 

consistent with typical views in social science (Coleman, 1988, 1990). Models with social 

interactions have been applied to a wide variety of problems within economics as well as 

within social science, see for example Durlauf (1997), Kirman (1997), and Rosser (1999) for 

overviews in social science. Several authors, such as Becker (1974, 1991), Becker and 

Murphy (2000), Brock and Durlauf (2001a, 2001b, 2002, 2006), Kirman and Zimmermann 

(2001), Manski (2000) and Shelling (1971), have discussed different model settings with 

social interaction in economics.  

Models with social interaction can be viewed as special cases of the so-called Quantal 

Response Equilibrium models (QRE). Whereas the standard textbook approach to game 

theory assumes that players behave perfectly rational and are able to account for other 

players’ uncertain actions in a consistent (optimal) way when computing and maximizing 

(expected) payoffs. McKelvey and Palfrey (1995, 1998) extended the notion of Nash 

equilibrium in game theory by allowing for randomness in behavior. The resulting theory is 

denoted Quantal Response Equilibrium (QRE). In the QRE model, perfectly rational 

expectations equilibrium embodied in mixed strategy Nash equilibrium is replaced by an 

imperfect, or noisy, rational expectations equilibrium meaning that the players are assumed to 

maximize expected utility plus noise (Goeree et al. 2005, 2016). The QRE comprises a 

limiting case where the QRE coincides with a subset of Nash equilibria (Nash, 1950). Related 

approaches are discussed by Anderson et al. (2002) and Chen et al. (1997). Haile et al. (2008) 

have discussed the empirical content of QRE and Melo et al. (2019) have discussed testing of 

QRE models.  

It is known that QRE models have at least one equilibrium (McKelvey and Palfrey, 

1995). However, despite its relevance, little is known about the uniqueness or number of 

equilibria in QRE models. To know the number of equilibria is useful knowledge when 

searching for equilibria. This issue is not only of theoretical interest because it has 

implications in the design of experiments, testing, and estimation of models involving this 

equilibrium concept (Aradillas-Lopez, 2020, Paula, 2017, and Melo et al., 2019). The number 

and location of equilibria also have implications for policy making in matters of conflict and 

collaboration. 
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The purpose of this paper is to establish conditions for the existence of single versus 

multiple QRE in the two-persons multinomial logit QRE model. Second, we discuss criteria 

for stability of equilibria. Finally, we show how the results obtained for QRE can be used to 

characterize the set of equilibria in specific multinomial logit models with social interaction 

where the preferences of an individual depend on the aggregate behavior of others (Brock and 

Durlauf, 2001a, 2001b, 2002, 2003, Kirman and Zimmermann, 2001, and Kline and Tamer, 

2020).  

Melo (2022) has established uniqueness of a QRE for a broad class of n-person games. 

He shows that the uniqueness of a QRE is determined by a precise relationship between a 

measure of players' payoff concavity, a bound on the intensity of strategic interaction, and the 

number of players in the game. However, his results do not cover the cases treated in our 

paper. In the present paper, no assumption is made about strategic network interaction beyond 

the information represented by the payoff matrix. In this setting several equilibria are 

possible. In several applications the existence of multiple equilibria seems plausible and can 

be given intuitive interpretations, for example in settings where tipping points may occur 

(Harré and Bossomaier, 2014). By proposing a simple binary model of social interaction 

where several equilibria are possible. Becker (1991) provided a convincing explanation of 

behavior and price-setting of restaurants, plays, and sporting events. Specifically, he shows 

how one can explain why restaurants and other activities do not raise prices even with 

persistent excess demand. 

 The paper is organized as follows. In section 2 we present a general framework for the 

two-person multinomial logit QRE games. In section 3 we obtain criteria for the existence of 

multiple and unique equilibria in two-person binary QRE models and the results are 

generalized to the multinomial case in section 4. In section 5 we study equilibria in 

multinomial logit models with social interaction. Section 6 discusses the issue of stability and 

also shows that under specific conditions QRE is the unique solution of a corresponding 

contraction mapping and in section 7 we discuss special cases. 

 
2. Multinomial logit quantal response games 
Consider a setting with two players, player a and player b. There are m alternatives available 

to player a and n alternatives available to player b. Given that player b chooses alternative k 

then if player a chooses alternative j player a receives payoff .a
jkv  Similarly, the payoff to 

player b is b
jkv  if player b  chooses alternative k given that player a chooses alternative j. The 
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payoff matrices { }a
jkv  and { }b

jkv  are assumed to be common knowledge. The players are 

assumed to choose the strategy that maximizes expected payoff plus noise, where the noise is 

represented by a random variable. Consequently, the index of the chosen alternative becomes 

stochastic. Let ( )P j  be the probability that player a chooses alternative j and ( )Q k  the 

probability that player b chooses alternative k and let 

  ( (1), (2),..., ( 1)),P P P P m= −  ( (1), (2),..., ( 1)).Q Q Q Q n= −   

The corresponding combination of expected payoffs and noise for players a and b are given 

by 

(2.1)  
1

( ) ( )na a a
j jr jr

U Q v Q r ε
=

= +∑     and     
1

( ) ( )mb b b
k kr kr

U P v P r ε
=

= +∑   

where a
jε  and b

kε  are random variables. In equilibrium (Quantal Response Equilibrium, QRE) 

we have  

   ( ) ( ( ) max ( ))a a
j r rP j P U Q U Q= =    and  ( ) ( ( ) max ( ))b b

k r rQ k P U P U P= =   

where the utilities of players a and b are given in (2.1) as functions of { ( )}P j  and { ( )},Q k  

respectively. We make the following assumption. 

  

Assumption 1 

 The random error terms { , )a b
j kε ε  are i.i.d. and independent of { ( ), ( )}P j Q k  with 

Gumbel c. d. f., i.e. 

( ) exp( exp( / ))a a
jP x xε λ≤ = − −   and  ( ) exp( exp( / ))b b

kP x xε λ≤ = − −  

for real x, where 0aλ >  and 0bλ >  are constants. 

 

 Assumption 1 means that the distributions of { , )a b
j kε ε  do not depend on the payoff 

matrices. Remember that the property that the random error terms are generated by Gumbel 

c.d.f. can be rationalized by the Independence of Irrelevant Alternatives assumption (IIA) 

proposed by Luce (1959), McFadden (1974) and Yellott (1977). The IIA assumption can be 

viewed as a representation of probabilistic rationality, see (Luce, 1977).  

It follows from Assumption 1 that the logit QRE is given by 

(2.2)                ( ) 1

1 1

exp( ( ))
( ) max

exp( ( ))

n a a
jra a r

j s m n a as m
srs r

v Q r
P j P U U

v Q r

λ

λ
=

≤
= =

= = = ∑
∑ ∑

      

and 
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(2.3)            ( ) 1

1 1

exp( ( ))
( ) max .

exp( ( ))

m b b
rkb b r

k s m m b bs
rss r

v P r
Q k P U U

v P r

λ

λ
=

= =

= = = ∑
∑ ∑

  

(McFadden, 1974). Let ( )a
jF Q  and ( )b

kF P  denote the multinomial logit expressions on the 

right hand side of (2.2) and (2.3), respectively, where ( )Q n  is replaced by 
1

1 ( )
r n

Q r
≤ −

−∑  and 

( )P m  is replaced by 
1

1 ( ).
r m

P r
≤ −

−∑  The equations above can thus be expressed more 

compactly as ( )aP F Q=   and ( ),bQ F P=  or ( , ) ( , )P Q F P Q=  where 

( , ) ( ( ), ( )),a bF P Q F Q F P= 1 2 1( ) ( ( ), ( ),..., ( ))a a a a
mF Q F Q F Q F Q−=  and 

1 2 1( ) ( ( ), ( ),..., ( )).b b b b
nF P F P F P F P−=  Let ( )a a a a a a

jk jk mk jn mnu v v v vλ= − − +  and 

( ).b b b b b b
jk jk mk jn mnu v v v vλ= − − +  With no essential loss of generality we shall in the following 

normalize by letting 1.a bλ λ= =  Hence, the model in (2.2) and (2.3) can also be expressed as 

(2.4)    
1

1
1 1

1 1

exp( ( ) )
( )

1 exp( ( ) )

n a a a
jr jn mnr

m n a a a
sr sn mns r

u Q r v v
P j

u Q r v v

−

=
− −

= =

+ −
=

+ + −
∑

∑ ∑
 

and 

(2.5)  
1

1
1 1

1 1

exp( ( ) )
( ) .

1 exp( ( ) )

m b b b
rk mk mnr

n m b b b
rs ms mns r

u P r v v
Q k

u P r v v

−

=
− −

= =

+ −
=

+ + −
∑

∑ ∑
 

When ,m n= a bλ λ λ= =   and :a b
jk jk jk kjv v v v= = =  the model reduces to a symmetric logit 

QRE with ( ) ( )Q j P j=  where 

(2.6)  
1

1
1 1

1 1

exp( ( ) )
( ) .

1 exp( ( ) )

m
jr jm mmr

m m
sr sm mms r

u P r v v
P j

u P r v v

−

=
− −

= =

+ −
=

+ + −
∑

∑ ∑
 

McKelvey and Palfrey (1995, p. 12) have proved that there exists at least one 

equilibrium in the general QRE model. For the sake of completeness we state the existence of 

an equilibrium in the case of the logit QRE. To this end let n∆ be the simplex defined by  

     
1

{ : 0, 1}.pp
p j rr

x R x x
=

∆ = ∈ ≥ ≤∑   

and let ( , ) ( ( ), ( ))a bF x y F y F x=  be defined on 1 1.m n− −∆ ×∆  Clearly, F maps 1 1m n− −∆ ×∆  into 

1 1.m n− −∆ ×∆  
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Theorem 1 

 The mapping ( , )F P Q  has a fixed point in 1 1.m n− −∆ ×∆  

 

The proof of Theorem 1 follows from Brouwer’s fixed point theorem since 1 1m n− −∆ ×∆  

is compact and convex. 

 The stochastic formulation of game theory enables researchers to formulate and 

estimate models in cases where the payoffs are unobservable utilities that may depend on 

several observable attributes, pecuniary as well as non-pecuniary ones. For example, in the 

symmetric case where ,jk jkv Zλ β= ( (1), (2),...),jk jk jkZ Z Z=  is a vector of observable 

attributes and β  is an unknown parameter vector to be estimated, the QRE model implies 

that 

       
( )log ( )( ) .
( ) jk mk

k

P j P k Z Z
P m

β
 

= − 
 

∑   

We note that when the dimension of β  is less than or equal to 1m −  then β  is identified 

provided  the matrix { }jra  has rank 1,m −  where 

        ( )( ( ) ( )).jr jk mk
k

a P k Z r Z r= −∑   

To simplify notation, we shall in the following normalize such that 1.a bλ λ= =  This, 

simply means that aλ  and bλ are absorbed in the respective payoff matrices and thus this 

normalization represents no loss of generality. 
  

 Proposition 1 

 The equilibrium choice probabilities given in (2.2) and (2.3) satisfy the following 

inequalities: 

  
exp(min ) exp(max )

( )
exp(min ) exp(max ) exp(max ) exp(min )

a a
s js s js

a a a a
s js s rs s js s rs

r j r j

v v
P j

v v v v
≠ ≠

≤ ≤
+ +∑ ∑

  

and  

             
exp(min ) exp(max )( ) .

exp(min ) exp(max ) exp(max ) exp(min )

b b
s sk s sk

b b b
s sk s sr s sk s sr

r k r k

v vQ k
v v v v

≠ ≠

≤ ≤
+ +∑ ∑
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 The proof of Proposition 1 is given in the appendix. Proposition 1 determines the 

range of possible equilibria.  

  

3. Equilibria in the binary logit QRE model 
In this section we shall analyze the binary case where 2.m n= =  Let (1),P P=  (1),Q Q=    

11 22 12 21,
a a a a au v v v v= + − −  11 22 12 21,

b b b b bu v v v v= + − −   

     
1( )

1 xL x
e−=

+
    

and   

(3.1)     21 22( ) log ( ).
1

a b b bxg x u L u x v v
x

 = − + − − 
  

For (0,1).x∈  In this case the QRE model reduces to 

(3.2)     12 22( )a a aP L u Q v v= + −    

and  

(3.3)        21 22( ).b b bQ L u P v v= + −   

When (3.3) is inserted into (3.2) we get 

(3.4)    12 22 12 22( ( ) )a b b b a aP L u L u P v v v v= + − + −   

which implies that 

(3.5)      12 22( ) .a ag P v v= −   

Since g is continuous, (0)g = −∞  and (1)g = ∞  it follows from Bolzano’s theorem that there exists 

at least one solution of (3.5) for P. However, (3.5) may have several solutions for P, 

depending on the payoff matrices, { }a
jkv  and { }.b

jkv  Before we state the next result we need 

−∞ the following lemma. 

 

 Lemma 1 

 Let 

        1 21 22 21 22[0,1]
max{ (1 ) ( )(1 ( ))}.b b b b b b

x
C x x L u x v v L u x v v

∈
= − + − − + −  

When 1 1a bu u C >  the function 

         21 22 21 22(1 ) ( )(1 ( )) 1a b b b b b b bu u x x L u x v v L u x v v− + − − + − −   

as two real roots.  
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The proof of Lemma 1 is given in the Appendix. The next Theorem gives a complete 

account of the equilibria in the binary QRE model.  

 

       Theorem 2 

            Assume that Assumption 1 holds and that m = n =2. When 1 1,a bu u C >  let 1w  and 2 ,w  

1 2 ,w w≤  be the roots of the function 

(3.6)        21 22 21 22(1 ) ( )(1 ( )) 1.a b b b b b b bu u x x L u x v v L u x v v− + − − + − −   

 If either of the 3 conditions  

(i)  1 1,a bu u C <   

(ii) 1 1a bu u C >    and   1
1 21 22 12 22

1

log ( ) ,
1

a b b b a aw u L u w v v v v
w

 
− + − < − − 

 

or 

(iii) 1 1a bu u C >    and   2
2 21 22 12 22

2

log ( )
1

a b b b a aw u L u w v v v v
w

 
− + − > − − 

 

hold there exists a unique set of equilibrium probabilities of the binary logit QRE model. If 

instead 

(iv) 1 1a bu u C >    and 

         2 1
2 21 22 12 22 1 21 22

2 1

log ( ) log ( )
1 1

a b b b a a a b b bw wu L u w v v v v u L u w v v
w w

   
− + − < − < − + −   − −   

   

there exist 3 equilibrium probabilities determined by (3.3). 

 

 The proof of Theorem 2 is given in the appendix. 

In the symmetric binary case where ,a b
jk jk jk kjv v v v= = =  we have, with (1),P P=  that 

(3.7)      12 22( )P L uP v v= + −   

which is equivalent to  

(3.8)      12 22( ) : log .
1

PP uP v v
P

ψ  = − = − − 
  

Since  

      1( )
(1 )

x u
x x

ψ ′ = −
−
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               Figure 1. Equilibria in the symmetric binary QRE model

 
we realize that unless 4u >  no more than one equilibrium can occur because the highest 

value (1 )x x−  can attain is 0.25. Figure 1 illustrates the nature of the equilibria in the 

symmetric binary logit QRE model in the case with three equilibria. Thus, the plot in Figure 1 

only has this form when 4.u >  When ( )L HPα ψ α< <  three equilibria are possible, namely 

,rP  r = A, B, C given in Figure 1.  

 

4. Equilibria in the multinomial case 
We now turn to an analysis of the multinomial logit QRE model.  

 

 Theorem 3  

 Consider the following inequalities 

(i)      [max ( ) min ( )] 4,a a a a
s rs ms s rs ms

r
v v v v− − − <∑   

 (ii)       [max ( ) min ( )] 4,b b b b
s rs ms s rs ms

r
v v v v− − − <∑   

(iii)      1max (max ( ) min ( ))
2

a a a a
r s sr sn s sr sn

mv v v v
m
−

− − − <
−

 

and  

(iv)            
1max (max ( ) min ( )) .
2

b b b b
r s rs ms s rs ms

nv v v v
n
−

− − − <
−

 

  

0 0.5 1 

 

 
 

A B C 
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The mapping ( , )F P Q  is a contraction if either (i) and (ii), or (iii) and (iv) are satisfied and F 

therefore has a unique fixed point on 1 1.m n− −∆ ×∆   

 

 The proof of Theorem 3 is given in the Appendix. Theorem 3 states that when the 

inequalities given in Theorem 3 are fulfilled there exists a unique equilibrium. However, 

when these inequalities do not hold several equilibria may occur. 

Let P  and Q  be any equilibrium vectors and let (1) (2)a P Pθ = +   and 

(1) (2).b Q Qθ = +   Moreover, let (1) / ap P θ=  and (1) / .bq Q θ=  For p, q (0,1)∈  it follows 

from (2.4) and (2.5) that 

(4.1)  ( )a
b ap L u q Kθ= +       

and     

(4.2)  ( )b
a bq L u p Kθ= +   

where 

         1
1 2 12 22 1 23

( ) ( ) ( )na a a a a a
a n n b r rr

K v v u u u u Q rθ −

=
= − + − + −∑     

and   
1

1 2 21 22 1 23
( ) ( ) ( ).mb b b b b b

b m m a r rr
K v v u u u u P rθ −

=
= − + − + −∑    

If (4.2) is inserted into (4.1) we get 

(4.3)        ( ( ) ).a b
b a b ap L u L u p K Kθ θ= + +   

Thus, as in the binary case the problem of solving for p and q in (4.1) and (4.2) can be 

reduced to a one-dimensional problem of finding the solutions to (4.3), which is similar to 

(3.4). From Theorem 2 we therefore get the next result. 

 

 Theorem 4 

 Assume that Assumption 1 holds. Let P  and Q  be any equilibrium vectors and let 

(1) (2) : aP P θ+ =   and (1) (2) : .bQ Q θ+ =   Let 

       2 [0,1]
max{ (1 ) ( )(1 ( ))}b b

a b a bx
C x x L u x K L u x Kθ θ

∈
= − + − +  

and let 1ω  and 2 ,ω 1 2 ,ω ω≤  be the roots of the function  

      (1 ) ( )(1 ( )) 1a b b b
a b a b a bu u x xL u x K L u x Kθ θ θ θ− + − + −  

 when 2 1.a b
a bu u Cθ θ >   

If 
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          2 1a b
a bu u Cθ θ >    

and 

                  2 1
2 1

2 1

log ( ) log ( )
1 1

a b a b
b a b a b a bu L u K K u L u Kω ωθ θ ω θ θ ω

ω ω
   

− + < < − +   − −   
   

there exist three equilibria determined by (4.1) and (4.2).  

 

Theorem 4 means that for any equilibrium vectors P  and Q  then, keeping

{ ( ), 3}P r r ≥  and { ( ), 3}Q r r ≥  fixed, there may exist several equilibrium values of (1)P  and 

(1).Q  Note that the enumeration of the alternatives is irrelevant for the result of Theorem 4. If 

for example m = 3, aθ  may be (1) (2),P P+   (1) (3)P P+   or (2) (3).P P+   In the case of 

multiple equilibria it is easy to compute the equilibrium probabilities when one equilibrium 

has been found. When (1) (2)a P Pθ = +   and p have been determined from (4.3) then the 

corresponding equilibrium probabilities are (1) aP pθ=  and (2) .a aP pθ θ= −   

 Next, we shall consider the symmetric case where .a b
jk jk jk kjv v v v= = =  In this case the 

equations in (4.1) and (4.2) reduce to a single equation, namely 

(4.5)       1
1 2 12 22 1 23

log ( ) ( ) ( )
1

m
m m r rr

p up v v u u v v P r
p

θ θ −

=

 
− = − + − + − − 

∑    

where 11 22 12 21u v v v v= + − −  and (1) (2).P Pθ = +   Let 

(4.6)         ( )( ) 0.5 ( 4) log 0.5 1 0.5 ( 4)f x x x x x x= − − − + −   

for 4.x ≥  It is easy to verify that ( )f x  is strictly increasing for x > 4. 

 

Corollary 1 

 Assume that Assumption 1 holds and that .a b
jk jk jk kjv v v v= = =  Let P be any 

equilibrium vector of choice probabilities and let (1) (2).P Pθ = +    

  If 4uθ >  and 1 2 12 22 1 23
( ) | ( ) ( ) ( ) |m

m m r rr
f u v v u u u u P rθ θ

=
> − + − + −∑    

there exist three equilibria determined by (4.5). 

 

 The proof of Corollary 1 is given in the appendix. 

Next, we shall consider the binary zero sum QRE model. In this case we have the 

following result which is an immediate implication of Theorem 3. 
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Corollary 2 

 Assume that Assumption 1 holds, and that .b a
jk jkv v= −  Consider the inequalities 

(i)      [max | | min | |] 4a a a a
s rs ms s rs ms

r
v v v v− − − <∑   

and 

 (ii)      1 1max (max | | min | |) min ,
2 2

a a a a
r s sr sn s sr sn

m nv v v v
m n
− − − − − <  − − 

 

The mapping ( , )F P Q  is a contraction if either (i) or (ii) are satisfied and F therefore has a 

unique fixed point on 1 1.m n− −∆ ×∆   

 

 

5. The multinomial logit model with social interaction  
Recall that by social interaction, it is understood interdependences between the decisions 

made by individuals which are not mediated by markets. Many interactions-based models are 

variants of game-theoretic models (Blume, 1997, Young, 1998, and Morris, 2000). What 

distinguishes the research on interactions-based models is the explicit attention given to 

formulating how an individual’s behavior is a function of the behavior of others and then 

studying what aggregate properties emerge in the population.  

In a typical model with social interaction in the case of observational identical 

individuals the utility function of individual i is given by 

(5.1)  ( )ij j ijU P jα β ε= + +   

where jα  is a deterministic term that may depend on observable attributes of alternative j and 

( )P j  is the probability that a decision-maker shall choose alternative j. The intuition of the 

preference structure given in (5.1) is that in many situations, such as the choice among 

restaurants (Becker, 1991), choice among books or cultural events, an individual’s 

preferences may depend on the aggregate behavior of others. The preference structure given 

in (5.1) may be extended to allow { },jα  and possibly ,β  to depend on observable individual 

characteristic in addition to the alternative-specific attributes.  

Under assumption 1, with λ  normalized to 1 it follows that 

(5.2)               
1

exp( ( ))
( )

exp( ( ))
j

m
rr

P j
P j

P r

α β

α β
=

+
=

+∑
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1

1

exp( 2 ( ) ( ))
: ( )

1 exp( 2 ( ) ( ))

m
j r j

m
rr m s r

P j P r
H P

P r P s

α β β β

α β β β

−

≠
−

< ≠

− + +
= =

+ − + +

∑
∑ ∑

  

with 0.mα =  We note that the structure of the formula in (5.2) is a special case of the QRE 

framework considered above with  

(5.3)     jk j jkv α βδ= +   

where 1jkδ =  if j = k, and zero otherwise. The next result follows readily from Theorem 3 

because (5.3) implies that 

 [max(0,max ) min(0,min )] 2 .j m jr j m jr
r m

u u β< <
<

− =∑   

 

 Corollary 3 

 Assume that (5.3) holds. If | | 2β <  the mapping H given in (5.2) is a contraction and 

there exists a unique equilibrium vector of choice probabilities. 

 

 The next corollary follows from Corollary 1. 

 

Corollary 4 

 Let P  be any equilibrium vector of choice probabilities satisfying (5.2) and let 

(1) (2).P Pθ = +   

          If 2βθ >  and 1 2(2 ) | |f βθ α α> −   

there exist at least three equilibria. 

 

 Evidently, as noted above, the enumeration of the alternatives is irrelevant for the 

result of the theorem. Thus, if ( ) ( )P r P sθ = +   where r s≠  then the result of Corollary 4 holds 

with the obvious modification of the indexation of the alfas.   

 

 Corollary 5 

 Assume that 0jα =  for all j in the multinomial logit model with social interaction. If 

2β <  there exist a unique equilibrium with choice probabilities equal to 1/m. If mβ >  there 

exist at least three equilibria which are determined by (1) / ,j jP p m=  (2) (1 ) / ,j jP p m= −  

( ) 1/jP r m=  for 3,r ≥  j = 1, 2, 3, where 1 0.5,p =  2p  and 3p  are the other solutions to  
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 log 2 (0.5 ) / 0.
1

p p m
p

β
 

+ − = − 
  

  

 The proof of Corollary 5 is given in the appendix. Corollary 5 extends Theorem 1 in 

Brock and Durlauf (2006). In the binary case that corresponds to the setting discussed by 

Becker (1991) the model in (5.2), with the normalization 2 0,α =  reduces to  

(5.4)           
1

1(1) .
1 exp( 2 (1))

P
Pα β β

=
+ − + −

  

In the binary case the next result follows immediately from Corollary 4. 

 

Corollary 6 

 Assume that m = 2 in the logit model with social interaction. 

(i)        If either 2β <  

or  

           2β >  and 1 2(2 ) | |f β α α< −    

then there exists one equilibrium probability. 

(ii)       If 2β >  and 1 2(2 ) | |f β α α> −   

there exist three equilibrium probabilities. 

  

 The result of Corollary 6 has also been proved by Becker (1991) and Brock and 

Durlauf (2001). 

   

6. Dynamic games and stability  
In this section we consider settings with two type of players that play repeated games at 

discrete time epochs. The implied dynamic system is governed by the recursive relations 

(6.1)      1 1( , ) ( , )t t t t tP Q F P Q+ + =     

t = 1, 2,…, where t indexes the time periods, and where it is understood that the payoffs may 

be time dependent. An important question is whether the non-linear difference equations in 

(6.1) converges towards a unique QRE when .tF F=  This feature corresponds to situations 

where the payoffs are time invariant during “long” time intervals. Let us first consider the 

binary case where 2.m n= =  We have the following result. 
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Theorem 5 

            Assume that Assumption 1 holds and that m = n =2. When 1 1,a bu u C >  let 1w  and 2 ,w

1 2w w≤  be the solutions to (3.6). If either  

(i) 1 1,a bu u C <  

(ii) 1 1a bu u C >    and   1
1 12 22 12 22

1

log ( )
1

a b b b a aw u L u w v v v v
w

 
− + − < − − 

 

or 

(iii) 1 1a bu u C >    and   2
2 12 22 12 22

2

log ( )
1

a b b b a aw u L u w v v v v
w

 
− + − > − − 

 

hold, the unique set of equilibrium probabilities is stable. If instead 

(iv) 1 1a bu u C >    and 

         2 1
2 12 22 12 22 1 12 22

2 1

log ( ) log ( )
1 1

a b b b a a a b b bw wu L u w v v v v u L u w v v
w w

   
− + − < − < − + −   − −   

   

there exist one unstable and two stable sets of equilibrium probabilities. 

 

 The proof of Theorem 5 is given in the appendix. 

 Consider the symmetric binary case where the choice probability (1)t tP P=  is 

determined by 

  1 12 22( ).t tP L uP v v+ = + −   

 

 Corollary 7 

 In the binary logit model with social interaction there exists a unique stable 

equilibrium probability if either 

(i)         2,β <  or  

(ii) 2β >  and 1 2(2 ) | | .f β α α< −    

If 

 (iii)       If 2β >  and 1 2(2 ) | |f β α α> −   

there exist three equilibrium probabilities where two are stable and one is unstable. 
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 The proof of Corollary 7 is given in the appendix. Becker (1991) has also given a 

proof of the result in Corollary 7.  

 Next, consider the general case. It follows from (2.4) and (2.5) that 

         
1

( )
( )( ( ) ),

( )

a
j a a

jd rd
r m

F Q
P j u P r u

Q d ≤ −

∂
= −

∂ ∑    
1

( ) ( )( ( ) )
( )

b
b bk
dk dr

r n

F Q Q k u Q r u
P d ≤ −

∂
= −

∂ ∑   

and  

  
( ) ( ) 0
( ) ( )

a b
j kF Q F P

P d Q d
∂ ∂

= =
∂ ∂

  

for all d. Let ( , )J P O  be the Jacobian matrix of ( , )F P Q  and let A and B be the matrices with 

elements 

 
1

( )( ( ) )b b
jd jd rd

r m
a P j u P r u

≤ −

= − ∑   and   
1

( )( ( ) ).a a
kd dk dr

r n
b Q k u Q r u

≤ −

= − ∑   

Hence, we can express the Jacobian matrix as 

  
0

( , ) .
0
A

J P Q
B

 
=  
 

  

 

Theorem 6 

A fixed point ( , )P Q  (say) of the mapping F is stable if the absolute value of all the 

eigenvalues of ( , )J P Q are less than one. 

 

The result of Theorem 6 is well known; for a proof see for example Michel et al. 

(2008).  

 

Corollary 8 

Under the assumptions of Theorem 3 F has a unique and stable fixed point. 

 

Under the conditions of Theorem 3 there exists an iteration process, starting with any 

initial vector of choice probabilities that are not degenerate will converge to a unique 

equilibrium.  

The next result follows from Corollary 3.  

 

Corollary 9 

The mapping ( )P H P→  given in (5.2) has a unique stable equilibrium when | | 2.β <   
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7. Examples 

Example 7.1 
In this example we consider a two-person game with 

(7.1)      1
a a
jr rr r

v v=∑ ∑   and  1
b b
kr rr r

v v=∑ ∑   

for all j and k. Note that the restrictions in (7.1) do not rule out zero sum games. It follows 

immediately from (7.1) that ( ) 1/P j m=  and ( ) 1/Q k n=  are equilibrium probabilities 

satisfying (2.2) and (2.3). The corresponding theta values are therefore 2 /a mθ =  and 

2 / .b nθ =  In this case equations (4.1) and (4.2) become 

(7.2)      1(2 ( 0.5))ap L n u q−= −    and    1(2 ( 0.5))bq L m u p−= −   

which imply that p is determined by 

(7.3)     1 1(2 ( (2 ( 0.5)) 0.5))a bp L n u L m u p− −= − −  

which has the same structure as (4.3) with 1 a
aK n u−= −  and 1 .b

bK m u−= −  In this case (4.4) 

becomes 

(7.4)        1 1 1 14 (1 ) (2 ( 0.5))(1 (2 ( 0.5))) 1 0.a bm n u u x xL m x L m x− − − −− − − − − =   

Furthermore,  

    1 1
2 [0,1]

max{ (1 ) (2 ( 0.5))(1 (2 ( 0.5)))}.b b

x
C x x L m u x L m u x− −

∈
= − − − −  

It is easily verified that the function 

      1 1(1 ) (2 ( 0.5))(1 (2 ( 0.5)))b bx x L m u x L m u x− −− − − −   

attains its unique maximum for x = 0.5, which implies that 2 1/16.C =  Furthermore, from 

Theorem 4 it follows that the roots 1ω  and 2ω  are determined as the solutions to (7.4).  

When 4a bu u mn>  and (7.1) holds we get from Theorem 4 that there are three solutions for p 

of (7.3) provided 

          
1 1

2 2 1 1

2 1

2 (2 ( 0.5)) 2 (2 ( 0.5))log log .
1 1

b baL m u L m uu
n n n

ω ω ω ω
ω ω

− −   − −−
− < < −   − −   

  

The case with 0.5p q= =  corresponds to the equilibrium ( , ).P Q  

 

Example 7.2 

In this example the game is assumed that (7.1) holds and that m n=  and .a b
jk jk jkv v v= =  

Hence, in this case (7.1) can be expressed as 

(7.5)         1jr rr r
v v=∑ ∑     
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for all j. The “battle of the sexes” game (Luce and Raiffa, 1957) has payoffs satisfying (7.5). 

It follows that the condition 4a bu u mn>  reduces to 2 .u m>  From Corollary 1 it follows that 

under (7.5) three equilibria exist provided 2u m>  and 1(2 ) 0.f m u− >  Since ( )f x  is strictly 

increasing for 4,x > it implies that the inequality 1(2 ) 0f m u− >  always holds in this case. In 

other words, when (7.5) holds there are always two equilibria when 2u m>  in addition to the 

equilibrium ( , ).P Q  The equilibria are determined by the roots of 

    2 ( 0.5)log .
1

p u p
p m

  −
− − 

  

 

Example 7.3 

Recall that an equilibrium can be stable even if the mapping H is not a contraction. Consider 

the threenomial model with social interaction. In this case (5.2) can be expressed as 

      1

1 2

exp( 2 (1) (2))(1)
1 exp( 2 (1) (2)) exp( (1) 2 (2))

P PP
P P P P

α β β β
α β β β α β β β

− + +
=

+ − + + + − + +
  

and 

     1

1 2

exp( (1) 2 (1))(2) .
1 exp( 2 (1) (1)) exp( (1) 2 (1))

P PP
P P P P
α β β β

α β β β α β β β
− + +

=
+ − + + + − + +

 

It follows readily that the Jacobian matrix J in this case becomes equal to 

(7.6)      
(2 (3) (2)) (1) ( (3) (2)) (1)

.
( (3) (1)) (2) (2 (3) (1)) (2)

P P P P P P
J

P P P P P P
β β
β β

+ − 
=  − + 

  

It follows that the larges eigenvalue that corresponds to the matrix J is equal to βµ  where 

    ( )
1/22(1) (2) (1 (3)) (3) (1) (2) (1 (3)) (3) 3 (1) (2) (3)P P P P P P P P P P Pµ  = + − + + − −    

From Theorem 6 it follows that an equilibrium vector P is stable if and only if 1.βµ <   

 

Example 7.4 

This example is a special case of social interaction with m = 3 alternatives. Suppose 3,β =  

1 2 log 2 1.6 0,907.α α α= = = − ≅ −  and 3 0.α =  Then it is immediately verified that 

(1) (2) 0.4P P= =   and (3) 0.2P =  is an equilibrium solution to (5.2). Let 

(1) (2) 0.8.P Pθ = + =   Since 1 2 0,α α− =  2.4 2βθ = >  and (2 ) 0,f βθ >  Corollary 4 applies 

implying that there are two additional equilibria determined by 
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  log 2 4.8 2.4.
1

p p p
p

βθ βθ
 

= − = − − 
  

The solutions to the above equation are 1 0.173,p =  2 11 0.827p p= − =  and 

3 (1) / 0.5.p P θ= =  Hence, there is second equilibrium solution given by 1(1) 0.138,P pθ∗ = =

1(2) 0.662P pθ θ∗ = − =  and (3) 1 0.4.P θ∗ = − =  The third equilibrium is given by 

(1) (2)P P∗∗ ∗=  and (2) (1).P P∗∗ ∗=   

Consider next the dynamic extension (Section 6) and let us find out which equilibria 

are stable. The formula for the Jacobian matrix associated with the model is given by (7.6). It 

follows that one of the eigenvalues are greater than 1 when ,P P=   which implies that this 

equilibrium is unstable. In contrast, both eigenvalues are positive and less than 1 when 

.P P∗=  Thus, there are two stable equilibria where one of the stable equilibria is equivalent to 

the other. 

 

Example 7.5 

This example is also a special case of social interaction with 3,m = 3,β =  1 0.146,α = −  

2 2.47α = −  and 3 0.α =  Let (1) 0.1,P =  (2) 0.2P =  and (3) 0.7P = , which is an equilibrium 

solution. With (1) (2) 0.3P Pθ = + =   we find that 0.9 2βθ = <  so that for this θ  only one 

equilibrium   

(7.7)           log 2
1

p p
p

βθ βθ
 

= − − 
  

exists. Consider next the case when (1) (3) 0.8.P Pθ = + =   In this case 2.4 2βθ = >  and 

1 3(2 ) (4.8) 0.113 | | 0.146f fβθ α α= = < − =  which means that also for this θ  only one 

solution to (7.9) exists. Consider finally the case when (2) (3) 0.9.P Pθ = + =  In this case 

2.7 2βθ = >  and 2 3(2 ) (5.4) 0.252 | | 0.247f fβθ α α= = > − = which implies that three 

solutions to (7.9) exists. With (2) / (2) / 0.9p P Pθ= =  it follows that 1 0.270,p =  2 0.928p =  

and 3 (2) / 0.222.p P θ= =  Hence, the corresponding equilibrium probabilities become; 

(1) 0.1,P∗ = (2) 0.243,P∗ =  (3) 0.657,P∗ =  (1) 0.1,P∗∗ =  (2) 0.835P∗∗ =  and (3) 0.065,P∗∗ =  in 

addition to .P   

Consider the dynamic extension (Section 6). By applying (7.6) we find that the 

equilibria and P∗∗  is stable whereas P  and P∗  are unstable. The largest eigenvalue of the 
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Jacobian that corresponds to P  is equal to 1.003 which means that this equilibrium is “close” 

to being stable. 

 

8. Conclusion 
In this paper we have established simple conditions which determine the number of stable 

equilibrium probabilities in the two-persons multinomial logit QRE models. Second, we have 

applied the obtained results to characterize the set of equilibrium probabilities in logit models 

of social interaction. Third, we have considered dynamic QRE games and discussed when 

they have stable equilibria. Finally, we have discussed some examples where multiple 

equilibria occur. 
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Appendix 
Proof of Proposition 1: 

Note that the mapping 

  1 2

1

exp( )
( , ,..., )

exp( )
j

m m
rr

y
y y y

y
=

→
∑

 

from mR  to R is increasing in jy  and decreasing in ky  for .k j≠  Since { ( )}Q r  add up to 1 it 

thus follows that  

 
exp( ( ))

( )
exp( ( ))

a
jrr

a
srs r

v Q r
P j

v Q r
= ∑
∑ ∑

 

 
exp(max )

.
exp(max ) exp(min )

a
r jr

a a
r jr r srs j

v
v v

≠

≤
+∑

 

Similarly, it follows that 

 
exp(min )

( ) .
exp(min ) exp(max )

a
r jr

a a
r jr r srs j

v
P j

v v
≠

≥
+∑

 

Hence, we have proved the first set of inequalities of the theorem. The proof of the second set 

is similar. 
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              Q.E.D. 

 

Proof of Lemma 1:  

Let ( )h x be defined by 

(0,1).  ( ) log{ (1 ) ( )(1 ( ))}.h x x x L cx d L cx d= − + − +   

By differentiation we obtain that 

 2
2 2

1 1( ) 2 ( )(1 ( )).
(1 )

h x c L cx d L cx d
x x

′′ = − − − + − +
−

  

Since ( ) 0,h x′′ <  h(x) is strictly concave. Evidently, h(x) tends towards −∞  when x tends to 

zero or one. Thus, if a is a positive constant and ( )[0,1]
exp max ( ) 1

x
a h x

∈
>  it follows that 

exp( ( )) 1a h x − has two roots in (0,1).  

            Q.E.D. 

Proof of Theorem 2: 

Recall that  

 1 21 22 21 22[0,1]
max{ (1 ) ( )(1 ( ))}b b b b b b

x
C x x L u x v v L u x v v

∈
= − + − − + −   

and 

      
21 22

( ) log
1 1 exp( )

a

b b b

x ug x
x u x v v

 = − − + − − + 
  

for (0,1).x∈  Evidently, we get from (3.1) and (3.2) that in equilibrium 

(A.1)       12 22 ( ).a av v g P− =  

By Lemma 1 it follows that it is concave and therefore has two roots, say 1w  and 2 ,w 1 2.w w≤  

We have that 

(A.2)        12 22 12 221 (1 ) ( )(1 ( ))( ) .
(1 )

a b b b b b b bu u x x L u x v v L u x v vg x
x x

− − + − − + −′ =
−

 

It follows from Lemma 1 that ( )g x′  has two roots, 1 2 ,w w≤ (say), when 1 1.a bu u C >  

Furthermore, ( )g x  increases until 1w  and thereafter decreases until 2 ,w  and then increases 

again. In contrast, if 1 1,a bu u C <  g(x) is an increasing function in (0,1). Therefore, if 

1 1,a bu u C <  (A.1) has only one solution for P. If 1 1a bu u C >  and 12 22 1( ) ( )a av v g P g w− = >  or 
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12 22 2( ) ( )a av v g P g w− = <  then also only one equilibrium can occur. If, however, 1 1a bu u C >  

and 2 12 22 1( ) ( ),a ag w v v g w< − <  we realize that 3 equilibria exist.  

           Q.E.D. 

 

Proof of Corollary 1: 

Let (1) (2)P Pθ = +   and (1) / .p P θ=  Recall that 

 ( ) log
1

xx ux
x

ψ θ = − − 
  

for (0,1).x∈ It follows from (4.4) that 

(A.3) 1
1 2 12 22 1 23

( ) ( ) ( ) ( ).m
m m r rr

p v v u u u u P rψ θ −

=
= − + − + −∑    

We have that 

 1( ) 4
(1 )

x u u
x x

ψ θ θ′ = − ≤ −
−

  

so that with 4,uθ <  ( )xψ  is strictly increasing and only solution for p of (A.3) in (0,1)  

exists. If 4,uθ >  ( )xψ ′  has two roots given by 

 1
40.5 0.5 1

u
ω

θ
= − −    and   2 11 .ω ω= −   

Note that by multiplying the nominator and denominator of 

 1 1 4 /
1 1 4 /

u
u
θ
θ

+ −
− −

 

by 1 1 4 / ,uθ+ −  we obtain that 

 
1 1 4 / 0.5 1 0.5 1 4 / .
1 1 4 /

u u u u
u
θ θ θ θ
θ

+ −
= − + −

− −
 

Hence, with ( )f x  given in (4.6) we get 

     2
1 1 4 /( ) 0.5 log 0.5 1 4 /
1 1 4 /

uu u u
u
θψ ω θ θ θ
θ

 + −
+ = − −  − − 

  

     ( )log 0.5 1 0.5 1 4 / 0.5 1 4 /u u u u uθ θ θ θ θ= − + − − −   

     ( )log 0.5 1 0.5 ( 4) 0.5 ( 4) ( ).u u u u u f uθ θ θ θ θ θ= − + − − − = −   

Similarly, it follows that  

     1( ) 0.5 ( ).u f uψ ω θ θ+ =   
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If 4uθ >  and  

(A.4)      1( ) 0.5 ( )u f uψ ω θ θ+ = > 1 2 12 22 1 23
( ) ( ) ( )m

m m r rr
v v u u u u P rθ

=
− + − + −∑    

(A.5)       2 1 2 12 22 1 23
( ) 0.5 ( ) ( ) ( ) ( )m

m m r rr
u f u v v u u u u P rψ ω θ θ θ

=
+ = − < − + − + −∑   

there exist at least three equilibria. It follows that (A.4) and (A.5) is equivalent to  

               
1

1 2 12 22 1 23
( ) | ( ) ( ) ( ) |m

m m r rr
f u v v u u u u P rθ θ −

=
> − + − + −∑    

which completes the proof. 

                                    Q.E.D.  

 

Proof of Corollary 5:  

When 0jα =  for all j it follows that there exist one equilibrium where ( ) 1/P j m=  so that 

2 / .mθ =  Furthermore, since 0,j kα α− =  the condition in Corollary 4 reduces to ,mβ >  

whence the result of the corollary follows. It follows from Corollary 1 and (4.4) that  

(1) /P p p mθ= =  and (2) (1 )P pθ= −  where p is one of the three solutions to  

  log 2 (0.5 ) / 0.
1

p p m
p

β
 

+ − = − 
  

The last equation has three solutions when ,mβ >  of which one equals 0.5. 

                  Q.E.D. 

Proof of Theorem 5: 

From (3.4) it follows that an equilibrium ( , )P Q  is stable provided  

(A.7)   12 22 12 22( ) ( ) 1a b a a a b b bu u L u Q v v L u P v v′ ′+ − + − < ,  

where 12 22( ).a a
aP L D Q v v= + −  It follows that (A.7) is equivalent to  

(A.8)    21 22 21 22(1 ) ( )(1 ( )) 1.a b b b b b b bu u P P L u P v v L u P v v− + − − + − <   

Assume first that 1 1.a bu u C <  Then by Theorem 2 and (A.8) a single equilibrium exists. Consider 

next the case when 1 1.a bu u C >  From (A.2) we see that ( ),g x′ [0,1],x∈  can be both positive 

and negative in this case. The graph of ( )g x  is similar to the graph in Figure 1. In cases (ii) 

and (iii) of Theorem 2 we realize that when ( ) 0g P′ >  at an equilibrium P then (A.8) holds 

whereas (A.8) does not hold when ( ) 0.g P′ <  Since ( ) 0Bg P′ <  (Figure 1) BP  is unstable. In 

contrast, ( ) 0Ag P′ >  and ( ) 0Cg P′ >  are stable. 

                     Q. E. D. 
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Proof of Corollary 7: 

With 2m =  it follows from (5.2), with (1) ,P P=  that 

       
1

1( )
1 exp( 2 )

P H P
Pα β β

= =
+ − + −

   

and 

(A.9)        ( ) 2 ( )(1 ( )) 2 (1 ).H P H P H P P Pβ β′ = − = −   

Hence, by Corollary 6 there exists a unique equilibrium P (say) which is stable when 2β <  

because in this case ( ) 1.H P′ <  Consider next the cases (ii) or (iii) of Theorem 2. In this case (with 

ψ  given by (3.6), 2D β=  and 12 22 1 )v v α β− = −  it follows that ( ) 0Pψ ′ >  which is equivalent to 

2 (1 ) 1P Pβ − <  implying that the single equilibrium P  is also stable in these cases. Consider finally 

case (iv) of Theorem 2. From Figure 1 we realize that at equilibrium B we have that 

( ) 0,BPψ ′ <  so that 2 (1 ) 1B BP Pβ − >  which shows that BP  is an unstable equilibrium. In a 

similar way it follows that the equilibria AP  and CP  are stable. 

           Q. E. D. 

 

Proof of Theorem 3: 

Recall that by (2.2) and (2.3) with 1a bλ λ= =  we have that 

           1

1 1

exp( ( ))
( ) ,

exp( ( ))

n a
jra r

j m n a
srs r

v Q r
F Q

v Q r
=

= =

= ∑
∑ ∑

    1

1 1

exp( ( ))
( )

exp( ( ))

m b
rkb r

k n m b
rss r

v P r
F P

v P r
=

= =

= ∑
∑ ∑

 

and 1 2 1 1 2 1( , ) ( ( ), ( ),..., ( ), ( ), ( ),..., ( )).a a a b b b
m nF P Q F Q F Q F Q F P F P F P− −=  Let 1 2( , ,...)x x x=  be a 

vector in some Euclidian space and define the norm || ||⋅  by || || max | | .k kx x=  It follows that 

(A.10)  
( )

( )( ) ( ) ( ) ( )
( )

a
j a a a a

jr jn sr sn
s

F Q
P j v v P j v v P s

Q r
∂

= − − −
∂ ∑   

and 

(A.11)  ( ) ( )( ) ( ) ( ) ( ).
( )

b
b b b bk
rk mk rs ms

s

F P Q k v v Q k v v Q s
P r

∂
= − − −

∂ ∑  

Evidently, we have that   

(A.12)          ( ) ( ) ( )(1 ( )) min ( ) ( )a a a a a a a a
jr jn sr sn jr jn s sr sn

s s j
v v v v P s v v P j v v P s

≠

− − − ≤ − − − −∑ ∑  

          ( min ( )) ( )(1 ( )).a a a a
jr jn s j sr snv v v v P j P j≠= − − − −  
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Similarly, we get that 

(A.13)  ( ) ( ) ( max ( )) ( )(1 ( )).a a a a a a a a
jr jn sr sn jr jn s j sr sn

s
v v v v P s v v v v P j P j≠− − − ≥ − − − −∑  

Thus, (A.12) and (A.13) implies that  

(A.14)       | ( ) ( ) | ( )(1 ( )) max | min ( ) |a a a a a a a a
jr jn sr sn q qr qn s q sr sn

s
v v v v P s P j P j v v v v≠− − − ≤ − − − −∑  

       ( )(1 ( ))(max ( ) min ( )).a a a a
s sr sn s sr snP j P j v v v v= − − − −  

Consequently, (A.10) and (A.14) yield 

(A.15)  
( )

| | ( )(1 ( ))(max ( ) min ( )).
( )

a
j a a a a

s sr sn s sr sn

F Q
P j P j v v v v

Q r
∂

≤ − − − −
∂

 

In a similar way it follows that 

(A.16)  ( )| | ( )(1 ( ))(max ( ) min ( )).
( )

b
b b b bk

s rs ms s rs ms
F P Q k P k v v v v
P r

∂
≤ − − − −

∂
 

Let ,P′  P, Q′  and Q be different vectors of choice probabilities. By the mean value theorem 

and (A.15) we therefore get that 

(A.17) 
( ) ( )

| ( ) ( ) | | ( ( ) ( )) | max | ( ) ( ) || |
a a
j ja a

j j r n
r n r nr r

F Q F Q
F Q F Q Q r Q r Q r Q r

Q Q

∗ ∗

<
< <

∂ ∂
′ ′ ′− = − ≤ −

∂ ∂∑ ∑   

 1 max | ( ) ( ) | [max ( ) min ( )].
4

a a a a
k n s sr sn s sr sn

r
Q k Q k v v v v< ′≤ − − − −∑   

Similarly, it follows from (A.16) that  

(A.18) 1| ( ) ( ) | max | ( ) ( ) | [max ( ) min ( )].
4

b b b b b b
k k j m s rs ms s rs ms

r
F P F P P j P j v v v v<′ ′− ≤ − − − −∑  

Let K be a constant such that 

(A.19)  [max ( ) min ( )] 4a a a a
s sr sn s sr sn

r
v v v v K− − − ≤∑   

and 

(A.20)  [max ( ) min ( )] 4 .b b b b
s rs ms s rs ms

r
v v v v K− − − ≤∑   

Then it follows from (A.17), (A.18), (A.19) and (A.20) that 

  || ( , ) ( , )) || || ( , ) ( , ) || .F P Q F P Q K P Q P Q′ ′ ′ ′− ≤ −   

Consequently, if 1K <  the mapping ( , )F P Q  is a contraction. Finally, remember that if a 

mapping is a contraction, it has a unique fixed point (Rudin, 1976). Hence, we have proved 

Theorem 1 when (i) and (ii) are satisfied.  
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 Assume next that the vector norm is given by ||| ||| | | .kk
x x=∑  Then it follows 

similarly to the derivations above that 

      | ( ) ( ) | ( )(1 ( ))[max (max ( ) min ( ))] ||| |||a a a a a a
j j r s sr sn s sr snF Q F Q P j P j v v v v Q Q′ ′− ≤ − − − − −  

which implies that  
(A.21)    

||| ( ) ( ) ||| ||| ||| [max (max ( ) min ( ))] ( )(1 ( ))a a a a a a
r s sr sn s sr sn

j m
F Q F Q Q Q v v v v P j P j

<

′ ′− ≤ − − − − −∑  

 2||| ||| [max (max ( ) min ( ))] .
1

a a a a
r s sr sn s sr sn

mQ Q v v v v
m
−′≤ − − − −
−

  

In a similar way we obtain that  

(A.22) 2||| ( ) ( ) ||| ||| ( ) ( ) ||| [max (max ( ) min ( ))] .
1

b b b b b b
k k r s rs ms s rs ms

nF P F P P j P j v v v v
n
−′ ′− ≤ − − − −
−

The result of Theorem 1 when (iii) and (iv) are satisfied now follows from (A.21) and (A.22).

           Q. E. D. 
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