Digital Public Defence: Kristina Totland Carm

MSc Kristina Totland Carm at Institute of Clinical Medicine will be defending the thesis “Genomic aberrations and molecular subtypes in multifocal prostate cancer” for the degree of PhD (Philosophiae Doctor).

Image may contain: Clothing, Cheek, Smile, Outerwear, Jaw.

Photo: Private

The public defence will be held as a video conference over Zoom.

The defence will follow regular procedure as far as possible, hence it will be open to the public and the audience can ask ex auditorio questions when invited to do so.

Click here to participate in the public defence

Download Zoom here

Due to copyright reasons, an electronic copy of the thesis must be ordered from the faculty. In order for the faculty to have time to process the order, it must be received by the faculty no later than 2 days prior to the public defence. Orders received later than 2 days before the defence will not be processed. Inquiries regarding the thesis after the public defence must be addressed to the candidate.

Digital Trial Lecture – time and place

See Digital Trial Lecture.

Adjudication committee

  • First opponent: Professor Ian Mills, University of Oxford, UK
  • Second opponent: Professor Karl-Henning Kalland, University of Bergen
  • Third member and chair of the evaluation committee: Associate Professor Stig Müller, University of Oslo

Chair of the Defence

Associate Professor June Helen Myklebust, University of Oslo

Principal Supervisor

Researcher Rolf I. Skotheim, Oslo University Hospital


Each year, 1.4 million men are diagnosed with prostate cancer globally, and many die from their disease. There is a pressing need for precise and robust biomarkers to separate the aggressive cancers from the more indolent ones. The multifocal and heterogeneous nature of the disease increases the level of complexity, greatly hindering the implementation of robust and informative prognostic tests. In this doctoral thesis, Kristina T. Carm and colleagues evaluated the usefulness of seven proposed molecular subtypes with different molecular analyses on a unique prostate cancer biobank, with multiple samples from spatially separated tumor foci. They found that the pronounced heterogeneity across and within tumors substantially decreased the fraction of successfully classified patients, thus weakening the potential clinical value of the subtypes.

Further, the researchers showed how high expression of a promising biomarker, the long non-coding RNA SCHLAP1, in any tumor sample from one patient was a predictor of poor prognosis. However, the level of heterogeneity was high; underscoring how multiple samples are instrumental in the search for robust biomarkers in prostate cancer prognostics and diagnostics.

Prediction of the aggressiveness of a patient’s cancer is highly sought after. Using a custom made targeted sequencing panel, Carm et al. tested for somatic mutations and explored the relationship between samples representing metastatic disease, as well as multiple primary tumor foci from radical prostatectomy specimens. Even though some mutations were shared between primary tissue and metastatic samples, the study revealed a highly complex molecular picture of the relationship between primary tumor foci and subsequent metastatic disease. Jointly, this thesis has elucidated prostate cancer as a multifaceted disease, and shown how development of diagnostic tools must take multifocality and heterogeneity into account.

Additional information

Contact the research support staff.

Published Oct. 1, 2021 12:09 PM - Last modified Oct. 18, 2021 10:35 AM